A single-phase, multi-component free-flow model. More...
#include <dumux/common/properties.hh>
#include <dumux/freeflow/navierstokes/model.hh>
#include <dumux/freeflow/nonisothermal/model.hh>
#include <dumux/freeflow/nonisothermal/indices.hh>
#include <dumux/freeflow/nonisothermal/iofields.hh>
#include <dumux/flux/fickslaw.hh>
#include <dumux/flux/fourierslaw.hh>
#include "volumevariables.hh"
#include "localresidual.hh"
#include "fluxvariables.hh"
#include "iofields.hh"
#include <dumux/assembly/staggeredlocalresidual.hh>
#include <dumux/material/fluidsystems/1pgas.hh>
#include <dumux/material/fluidsystems/1pliquid.hh>
#include <dumux/material/fluidstates/compositional.hh>
Go to the source code of this file.
For an equations not specific to multiple components see dumux/freeflow/navierstokes/model.hh
The multi-component system is closed by a component mass/mole balance equation for each component \(\kappa\):
\[ \frac{\partial \left(\varrho X^\kappa\right)}{\partial t} + \nabla \cdot \left( \varrho {\boldsymbol{v}} X^\kappa - (D^\kappa + D_\text{t}) \varrho \nabla X^\kappa \right) - q^\kappa = 0 \]
Alternatively, one component balance equation can be replace by a total mass/mole balance equation :
\[ \frac{\partial \varrho_g}{\partial t} + \nabla \cdot \left( \varrho {\boldsymbol{v}} - \sum_\kappa (D^\kappa + D_\text{t}) \varrho \nabla X^\kappa \right) - q = 0 \]
The eddy diffusivity \( D_\text{t} \) is related to the eddy viscosity \( \nu_\text{t} \) by the turbulent Schmidt number, for Navier-Stokes models \( D_\text{t} = 0 \).
\[ D_\text{t} = \frac{\nu_\text{t}}{\mathrm{Sc}_\text{t}} \]
So far, only the staggered grid spatial discretization (for structured grids) is available.
Namespaces | |
namespace | Dumux |
namespace | Dumux::Properties |
The energy balance equation for a porous solid. | |
namespace | Dumux::Properties::TTag |
Type tag for numeric models. | |