version 3.10-dev
Bibliography
[1]

Ivar Aavatsmark. An introduction to multipoint flux approximations for quadrilateral grids. Computational Geosciences, 6:405–432, 2002.

[2]

M. Acosta, C. Merten, G. Eigenberger, H. Class, R. Helmig, B. Thoben, and H. Müller-Steinhagen. Modeling non-isothermal two-phase multicomponent flow in the cathode of PEM fuel cells. Journal of Power Sources, page in print, 2006.

[3]

J. J. Adams and S. Bachu. Equations of state for basin geofluids: algorithm review and intercomparison for brines. Geofluids, 2(4):257–271, 2002.

[4]

G. A. Adebiyi. Formulations for the thermodynamic properties of pure substances. In ASME 2003 International Mechanical Engineering Congress and Exposition, pages 183–188. American Society of Mechanical Engineers, 2003.

[5]

H.T. Aichlmayr and F.A. Kulacki. The effective thermal conductivity of saturated porous media, pages 377–460. Elsevier, 2006.

[6]

Elvio Alanis, Graciela Romero, and Carlos C. Martinez. Interferometric measurement of diffusion coefficients through a scanning laser beam. Optical Engineering, 39(3):744 – 750, 2000.

[7]

Martin Alkämper, Andreas Dedner, Robert Klöfkorn, and Martin Nolte. The DUNE-ALUGrid Module. Archive of Numerical Software, 4(1):1–28, 2016.

[8]

D. Ambrose and J. Walton. Vapour pressures up to their critical temperatures of normal alkanes and 1-alkanols. Pure and Applied Chemistry, 61(8):1395–1403, 1989.

[9]

ANSYS, Inc. ANSYS FLUENT 12.0 - User's Guide. ANSYS, Inc., 12.0 edition, 2009.

[10]

B. S. Baldwin and H. Lomax. Thin Layer Approximation and Algebraic Model for Seperated Turbulent Flows. ACM Trans Math Software, 78–257:1–9, 1978.

[11]

P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger, and O. Sander. A Generic Grid Interface For Parallel and Adaptive Scientific Computing. Part II: implementation and tests in DUNE. Computing, 82(2):121–138, 2008.

[12]

M. Batzle and Z. Wang. Seismic properties of pore fluids. Geophysics, 57(11):1396–1408, 1992.

[13]

Jacob Bear. Dynamics of Fluids in Porous Media. Dover Civil and Mechanical Engineering Series. Dover, 1972.

[14]

S. G. S. Beirão, A. P. C. Ribeiro, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro. Thermal conductivity of humid air. International Journal of Thermophysics, 33(8):1686–1703, Sep 2012.

[15]

Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1–137, 2005.

[16]

A. F. Birch and H. Clark. The thermal conductivity of rocks and its dependence upon temperature and composition. American Journal of Science, 238(8):529–558, 1940.

[17]

R Brooks and T Corey. Hydrau uc properties of porous media. Hydrology Papers, Colorado State University, 24:37, 1964.

[18]

A. Burri, A. Dedner, R. Klöfkorn, and M. Ohlberger. An efficient implementation of an adaptive and parallel grid in DUNE. In Computational Science and High Performance Computing II, volume 91, pages 67–82. Springer, 2006.

[19]

Philip C. Carman. Fluid flow through granular beds. Transactions, Institution of Chemical Engineers, 15:150–166, 1937. reprinted in Chemical Engineering Research and Design, 75:S32–S48, 1997.

[20]

Kuei-Yuan Chien. Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model. AIAA Journal, 20(1):33–38, 1982.

[21]

H. Class and R. Helmig. Numerical Simulation of Nonisothermal Multiphase Multicomponent Processes in Porous Media – 2. Applications for the Injection of Steam and Air. Advances in Water Resources, 25:551–564, 2002.

[22]

Holger Class. Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in NAPL-kontaminierten porösen Medien. PhD thesis, Technische Universität Braunschweig, 2001. doi 10.18419/opus-223.

[23]

H. Class. Models for Non-Isothermal Compositional Gas-Liquid Flow and Transport in Porous Media. University of Stuttgart, 1 edition, 2007.

[24]

J. R. Cooper and R. B. Dooley. Release of the IAPWS formulation 2008 for the viscosity of ordinary water substance, 2008.

[25]

T. E. Daubert and R. P. Danner. Physical and Thermodynamic Properties of Pure Chemicals: Design institute for physical property data, American institute of chemical engineers. vp. Hemisphere Publishing Corporation, 1989.

[26]

M. Delshad and G. A. Pope. Comparison of the three-phase oil relative permeability models. Transport in Porous Media, 4(1):59–83, 1989.

[27]

Z. Duan and R. Sun. An improved model calculating CO 2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical geology, 193(3):257–271, 2003.

[28]

R. T. Ferrell and D. M. Himmelblau. Diffusion coefficients of nitrogen and oxygen in water. Journal of chemical and engineering data, 12(1):111–115, 1967.

[29]

F. Fichot, F. Duval, N. Trégourès, C. Béchaud, and M. Quintard. The impact of thermal non-equilibrium and large-scale 2d/3d effects on debris bed reflooding and coolability. Nuclear Engineering and Design, 236(19):2144–2163, 2006.

[30]

Stefan Finsterle. Inverse Modellierung zur Bestimmung hydrogeologischer Parameter eines Zweiphasensystems. VAW, 1993.

[31]

Flekkøy, EG and Oxaal, U and Feder, J and Jøssang, T. Hydrodynamic dispersion at stagnation points: Simulations and experiments. Physical Review E, 52(5):4952, 1995.

[32]

IAPWS (The International Association for the Properties of Water and Steam). Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. http://www.iapws.org/IF97-Rev.pdf, 1997.

[33]

C. Geuzaine and J. F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.

[34]

J. Gmehling, U. Onken, and H. W. Schulte. Vapor-liquid equilibriums for the binary systems diethyl ether-halothane (1, 1, 1-trifluoro-2-bromo-2-chloroethane), halothane-methanol, and diethyl ether-methanol. Journal of Chemical and Engineering Data, 25(1):29–32, 1980.

[35]

Gang Han and Maurice B Dusseault. Description of fluid flow around a wellbore with stress-dependent porosity and permeability. Journal of Petroleum science and engineering, 40(1-2):1–16, 2003.

[36]

O. T. Hanna, O. C. Sandell, and P. R. Mazet. Heat and Mass Transfer in Turbulent Flow Under Conditions of Drag Reduction. AIChE Journal, 27(4):693–697, 1981.

[37]

Francis H. Harlow and J. Eddie Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Physics of Fluids, 8(12):2182, 1965.

[38]

Rainer Helmig and others. Multiphase flow and transport processes in the subsurface: a contribution to the modeling of hydrosystems.. Springer-Verlag, 1997.

[39]

R. Helmig. Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, 1 edition, 1997.

[40]

Nguyenho Ho, Sarah D. Olson, and Homer F. Walker. Accelerating the uzawa algorithm. SIAM Journal on Scientific Computing, 39(5):S461–S476, 2017.

[41]

B. R. Hollis. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels. 1996.

[42]

IAPWS. Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance. Technical Report IAPWS R15-11, The International Association for the Properties of Water and Steam, Plzeň, Czech Republic, 2011.

[43]

J. Gudbjerg and O. Trötschler and A. Färber and T.O. Sonnenborg and K.H. Jensen. On spurious water flow during numerical simulation of steam injection into water-saturated soil. Journal of Contaminant Hydrology, 75(3–4):297 – 318, 2004.

[44]

V. Joekar-Niasar, S. M. Hassanizadeh, and A. Leijnse. Insights into the relationships among capillary pressure, saturation, interfacial area and relative permeability using pore-network modeling. Transport in Porous Media, 74(2):201–219, 2008.

[45]

O. Johansen. Thermal conductivity of soils. Technical report, DTIC Document, 1977.

[46]

W. M. Kays, M. E. Crawford, and B. Weigand. Convective heat and mass transfer. McGraw-Hill Higher Education, 4 edition, 2005.

[47]

J. E. Killough and C. A. Kossack. Fifth Comparative Solution Project: Evaluation of Miscible Flood Simulators. Society of Petroleum Engineers, SPE 16000, 1987.

[48]

R. Krishna and J. A. Wesselingh. The maxwell-stefan approach to mass transfer. Chemical Engineering Science, 52(6):861–911, 1997.

[49]

A Lashanizadegan, Sh Ayatollahi, and M Homayoni. Simultaneous heat and fluid flow in porous media: case study: steam injection for tertiary oil recovery. Chemical Engineering Communications, 195(5):521–535, 2008.

[50]

B.E. Launder and B.I. Sharma. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2):131 – 137, 1974.

[51]

E. W. Lemmon and R. T. Jacobsen. Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air. International Journal of Thermophysics, 25(1):21–69, 2004.

[52]

W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt. Handbook of chemical property estimation methods: environmental behavior of organic compounds. 1990.

[53]

F. R. Menter. Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8):1598–1605, 1994.

[54]

E. E. Michaelides. Thermodynamic properties of geothermal fluids. Trans.-Geotherm. Resour. Counc.;(United States), 5(CONF-811015-), 1981.

[55]

R. J. Millington and J. P. Quirk. Permeability of porous solids. Trans. Faraday Soc., 57:1200–1207, 1961.

[56]

D. A. Nield and A. Bejan. Convection with Change of Phase. Convection in Porous Media, pages 403–452, 2006.

[57]

Thermophysical Properties of Fluid Systems: http://webbook.nist.gov/chemistry/fluid/.

[58]

K. P. Nuske. Determination of interfacial area-capillary pressure-saturation relationships for a single fracture. Master's thesis, Universität Stuttgart, 2009.

[59]

Philipp Nuske. Beyond local equilibrium : relaxing local equilibrium assumptions in multiphase flow in porous media. PhD thesis, Universität Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2014.

[60]

C. J. Ochs, F. Sittner, R. Ugas-Carrión, M. Yekehtaz, and W. Ensinger. Structural and electrochemical characterization of zirconium and silicon based sol-gel coatings for corrosion protection. Current Topics in Electrochemistry, 13:59–65, 2008.

[61]

Herbert Oertel. Prandtl - Führer durch die Strömungslehre: Grundlagen und Phänomene. Springer Vieweg, Wiesbaden, 13 edition, 2012.

[62]

Raymond W Ogden. Non-linear elastic deformations. Courier Corporation, 1997.

[63]

L. I. Oliveira and A. H. Demond. Estimation of primary drainage three-phase relative permeability for organic liquid transport in the vadose zone. Journal of Contaminant Hydrology, 66(3):261–285, 2003.

[64]

Huseyin Ozbek and Sidney L. Phillips. Thermal Conductivity of Aqueous Sodium Chloride Solutions from 20 to 330 °C. J. Chem. Eng. Data, 8(25):263–267, 1980.

[65]

C. Palliser and R. McKibbin. A model for deep geothermal brines, III: Thermodynamic properties–enthalpy and viscosity. Transport in Porous Media, 33(1-2):155–171, 1998.

[66]

V. C. Patel, W. Rodi, and G. Scheuerer. Turbulence models for near-wall and low Reynolds number flows - A review. AIAA Journal, 23(9):1308–1319, 1985.

[67]

Edzer J. Pebesma and Cees G. Wesseling. Gstat: a program for geostatistical modelling, prediction and simulation. Computers & Geosciences, 24(1):17–31, 1998.

[68]

D.-Y. Peng and D. B. Robinson. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1):59–64, 1976.

[69]

B. E. Poling, J. M. Prausnitz, and J. P. O'Connell. The properties of gases and liquids, volume 5. McGraw-Hill New York, 2001.

[70]

R. Prydz. An Improved Oxygen Vapor Pressure Representation. Metrologia, 8(1):1, 1972.

[71]

Joseph A. Rard and Donald G. Miller. The mutual diffusion coefficients of Na2SO4−H2O and MgSO4−H2O at 25°C from Rayleigh interferometry. Journal of Solution Chemistry, 8(10), 1979.

[72]

R. C. Reid, J.M. Prausnitz, and B. E. Poling. The Properties of Gases and Liquids. McGraw-Hill Inc., 1987.

[73]

R. Sander. Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry, 1999.

[74]

A. E. Scheidegger. General theory of dispersion in porous media. Journal of Geophysical Research (1896-1977), 66(10):3273–3278, 1961.

[75]

Martin Schneider and Timo Koch. Stable and locally mass- and momentum-conservative control-volume finite-element schemes for the Stokes problem. Computer Methods in Applied Mechanics and Engineering, 420:116723, February 2024.

[76]

C. Howard Shomate. A method for evaluating and correlating thermodynamic data. The Journal of Physical Chemistry, 58(4):368–372, Apr 1954.

[77]

W. H. Somerton, J. A. Keese, S. L. Chu, and others. Thermal behavior of unconsolidated oil sands. Society of Petroleum Engineers Journal, 14(05):513–521, 1974.

[78]

P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerodynamic flows. In Aerospace Sciences Meetings, pages –. American Institute of Aeronautics and Astronautics, 1992.

[79]

R. Span and W. Wagner. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of physical and chemical reference data, 25(6):1509–1596, 1996.

[80]

R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner, and A. Yokozeki. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa. Journal of Physical and Chemical Reference Data, 29(6):1361–1433, 2000.

[81]

N. Spycher and K. Pruess. CO 2-H 2 O mixtures in the geological sequestration of CO 2. II. Partitioning in chloride brines at 12–100 C and up to 600 bar. Geochimica et Cosmochimica Acta, 69(13):3309–3320, 2005.

[82]

N. Spycher, K. Pruess, and J. Ennis-King. CO_2-H_2O mixtures in the geological sequestration of CO_2. I. Assessment and calculation of mutual solubilities from 12 to 100 C and up to 600 bar. Geochimica et cosmochimica acta, 67(16):3015–3031, 2003.

[83]

Ross Taylor and Rajamani Krishna. Multicomponent mass transfer, volume 2. John Wiley & Sons, 1993.

[84]

G. Tchobanoglous and E. D. Schroeder. Water Quality: Characteristics. Modeling, Modification: Addison-Wesley, 1985.

[85]

E. R. van Driest. On Turbulent Flow Near a Wall. AIAA Journal, 23(11):1007–1011, 1956.

[86]

Natan B Vargaftik. Tables on the thermophysical properties of liquids and gases in normal and dissociated states. 1975.

[87]

Venturoli, Maddalena and Boek, Edo S. Two-dimensional lattice-Boltzmann simulations of single phase flow in a pseudo two-dimensional micromodel. Physica A: Statistical Mechanics and its Applications, 362(1):23–29,

[88]

Henk Versteeg and Weeratunge Malalasekra. An Introduction to Computational Fluid Dynamics. Pearson Education, Harlow, 2 edition, 2009.

[89]

W. R. Walker, J. D. Sabey, and D. R. Hampton. Studies of heat transfer and water migration in soils. Final report. Technical report, Colorado State Univ., Fort Collins (USA). Solar Energy Applications Lab., 1981.

[90]

K. Watanabe and R. B. Dooley. Guideline on the Henry's Constant and Vapor-Liquid Distribution Constant for Gases in H2O and D2O at High Temperatures. International Association for the Properties of Water and Steam, 2004.

[91]

David C. Wilcox. Formulation of the k-ω Turbulence Model Revisited. AIAA Journal, 46(11):2823–2838, 2008.

[92]

P. A. Witherspoon and D. N. Saraf. Diffusion of Methane, Ethane, Propane, and n-Butane in Water from 25 to 43°. The Journal of Physical Chemistry, 69(11):3752–3755, 1965.

[93]

B. Xu, K. Nagashima, J. M. DeSimone, and C. S. Johnson. Diffusion of water in liquid and supercritical carbon dioxide: an NMR study. The Journal of Physical Chemistry A, 107(1):1–3, 2003.

[94]

V. D. Yusufova, R. I. Pepinov, V. A. Nikolaev, and G. M. Guseinov. Thermal Conductivity of Aqueous Solutions of NaCl. translated from Inzhenerno-Fizicheskii Zhurnal, 8(4):600–605, 1975.