version 3.10-dev
Dumux::ThermalConductivitySomertonTwoP< Scalar > Class Template Reference

Effective thermal conductivity after Somerton. More...

#include <dumux/material/fluidmatrixinteractions/2p/thermalconductivity/somerton.hh>

Description

template<class Scalar>
class Dumux::ThermalConductivitySomertonTwoP< Scalar >

Somerton (two fluid phases)

The Somerton method [77] computes the thermal conductivity of dry and the wet soil material. It uses a root function of the water saturation to compute the effective thermal conductivity for a two-phase fluidsystem. The individual thermal conductivities are calculated as geometric mean of the thermal conductivity of the porous material and of the respective fluid phase.

The effective thermal conductivity of ThermalConductivitySomertonTwoP is given by

\[ \lambda_\text{eff} = \lambda_\text{g,eff} + \sqrt{S_\text{w}} \left(\lambda_\text{w,eff} - \lambda_\text{g,eff}\right) \]

with \( S_\text{w} \) the water saturation, \( S_\text{n} \) the NAPL saturation, the effective phase saturations given by \( \lambda_{\alpha,\text{eff}} = (\lambda_\text{s})^{\left(1-\phi\right)} (\lambda_\alpha)^\phi, \alpha \in \lbrace\text{w,n,g}\rbrace \) (geometric mean) and \( \lambda_\text{s} \) is the thermal conductivity of the solid phase. The effective conductivity \( \lambda_\text{g,eff} \) corresponds to dry conditions, whereas the effective conductivity \( \lambda_\text{g,eff} \) corresponds to wet conditions.

Static Public Member Functions

template<class VolumeVariables >
static Scalar effectiveThermalConductivity (const VolumeVariables &volVars)
 Effective thermal conductivity in \(\mathrm{W/(m K)}\) for two phases. More...
 

Member Function Documentation

◆ effectiveThermalConductivity()

template<class Scalar >
template<class VolumeVariables >
static Scalar Dumux::ThermalConductivitySomertonTwoP< Scalar >::effectiveThermalConductivity ( const VolumeVariables &  volVars)
inlinestatic
Parameters
volVarsvolume variables
Returns
Effective thermal conductivity in \(\mathrm{W/(m K)}\) for two phases

The documentation for this class was generated from the following file: