Relation for the saturation-dependent effective thermal conductivity. More...
#include <dumux/material/fluidmatrixinteractions/2p/thermalconductivity/johansen.hh>
ThermalConductivityJohansen
[45] computes the thermal conductivity of dry and the wet soil material and interpolates using the Kersten number. The effective wet conductivity is based on a geometric average and the effective dry conductivity is based on a semi-emprical relation and fitted to medium quartz sand.
The effective thermal conductivity is given by
\[ \lambda_\text{eff} = \lambda_{\text{dry}} + \text{Ke} \left(\lambda_\text{wet} - \lambda_\text{dry}\right), \quad \lambda_\text{wet} = \lambda_\text{s}^{\left(1-\phi\right)} \lambda_\text{w}^\phi, \quad \lambda_\text{dry} = \frac{0.135 \rho_\text{s} \phi + 64.7}{\rho_\text{s} - 0.947 \rho_\text{s} \phi}, \]
where \( \phi \) is the porosity, \( \lambda_\alpha \) is the thermal conductivity of phase \( \alpha \), \( \rho_\text{s} \) denotes the density of the solid phase, and the Kersten number is given by \( \text{Ke} = (\kappa S_\text{w})/(1 + (1-\kappa) S_\text{w}) \), with the wetting phase saturation \( S_w \) and a fitting parameter \( \kappa = 15.6 \) for medium quartz sand.
Static Public Member Functions | |
template<class VolumeVariables > | |
static Scalar | effectiveThermalConductivity (const VolumeVariables &volVars) |
Effective thermal conductivity in \(\mathrm{W/(m K)}\) for two phases. More... | |
|
inlinestatic |
volVars | volume variables |