A two-phase fluid system with two components water \((\mathrm{H_2O})\) Nitrogen \((\mathrm{N_2})\) for non-equilibrium models.
#include <dumux/material/fluidsystems/h2on2.hh>
Public Types | |
using | H2O = TabulatedH2O |
The component for pure water. More... | |
using | N2 = SimpleN2 |
The component for pure nitrogen. More... | |
using | Scalar = Scalar |
export the scalar type More... | |
using | ParameterCache = NullParameterCache |
The type of parameter cache objects. More... | |
Static Public Member Functions | |
static std::string | phaseName (int phaseIdx) |
Return the human readable name of a fluid phase. More... | |
static constexpr bool | isMiscible () |
Returns whether the fluids are miscible. More... | |
static constexpr bool | isGas (int phaseIdx) |
Return whether a phase is gaseous. More... | |
static bool | isIdealMixture (int phaseIdx) |
Returns true if and only if a fluid phase is assumed to be an ideal mixture. More... | |
static constexpr bool | isCompressible (int phaseIdx) |
Returns true if and only if a fluid phase is assumed to be compressible. More... | |
static bool | isIdealGas (int phaseIdx) |
Returns true if and only if a fluid phase is assumed to be an ideal gas. More... | |
static std::string | componentName (int compIdx) |
Return the human readable name of a component. More... | |
static Scalar | molarMass (int compIdx) |
Return the molar mass of a component in \(\mathrm{[kg/mol]}\). More... | |
static Scalar | criticalTemperature (int compIdx) |
Critical temperature of a component \(\mathrm{[K]}\). More... | |
static Scalar | criticalPressure (int compIdx) |
Critical pressure of a component \(\mathrm{[Pa]}\). More... | |
template<class FluidState > | |
static Scalar | kelvinVaporPressure (const FluidState &fluidState, const int phaseIdx, const int compIdx) |
Vapor pressure including the Kelvin equation in \(\mathrm{[Pa]}\). More... | |
static Scalar | criticalMolarVolume (int compIdx) |
Molar volume of a component at the critical point \(\mathrm{[m^3/mol]}\). More... | |
static Scalar | acentricFactor (int compIdx) |
The acentric factor of a component \(\mathrm{[-]}\). More... | |
static void | init () |
Initialize the fluid system's static parameters generically. More... | |
static void | init (Scalar tempMin, Scalar tempMax, unsigned nTemp, Scalar pressMin, Scalar pressMax, unsigned nPress) |
Initialize the fluid system's static parameters using problem specific temperature and pressure ranges. More... | |
template<class FluidState > | |
static Scalar | density (const FluidState &fluidState, int phaseIdx) |
Given a phase's composition, temperature, pressure, and the partial pressures of all components, return its density \(\mathrm{[kg/m^3]}\). More... | |
template<class FluidState > | |
static Scalar | molarDensity (const FluidState &fluidState, int phaseIdx) |
Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More... | |
template<class FluidState > | |
static Scalar | viscosity (const FluidState &fluidState, int phaseIdx) |
Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More... | |
template<class FluidState > | |
static Scalar | fugacityCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx) |
Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase. More... | |
template<class FluidState > | |
static Scalar | diffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx) |
Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More... | |
template<class FluidState > | |
static Scalar | binaryDiffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx) |
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More... | |
template<class FluidState > | |
static Scalar | enthalpy (const FluidState &fluidState, int phaseIdx) |
Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More... | |
template<class FluidState > | |
static Scalar | componentEnthalpy (const FluidState &fluidState, int phaseIdx, int componentIdx) |
Returns the specific enthalpy \(\mathrm{[J/kg]}\) of a component in the specified phase. More... | |
template<class FluidState > | |
static Scalar | thermalConductivity (const FluidState &fluidState, const int phaseIdx) |
Thermal conductivity of a fluid phase \(\mathrm{[W/(m K)]}\). More... | |
template<class FluidState > | |
static Scalar | heatCapacity (const FluidState &fluidState, int phaseIdx) |
Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More... | |
static constexpr bool | isTracerFluidSystem () |
Some properties of the fluid system. More... | |
static constexpr int | getMainComponent (int phaseIdx) |
Get the main component of a given phase if possible. More... | |
static constexpr bool | viscosityIsConstant (int phaseIdx) |
Returns true if and only if a fluid phase is assumed to have a constant viscosity. More... | |
static Scalar | density (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase. More... | |
static Scalar | molarDensity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More... | |
static Scalar | fugacityCoefficient (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx, int compIdx) |
Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase. More... | |
static Scalar | viscosity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More... | |
static Scalar | diffusionCoefficient (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx, int compIdx) |
Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More... | |
static Scalar | binaryDiffusionCoefficient (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx, int compIIdx, int compJIdx) |
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More... | |
static Scalar | enthalpy (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More... | |
static Scalar | thermalConductivity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\). More... | |
static Scalar | heatCapacity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More... | |
Static Public Attributes | |
static constexpr int | numPhases = 2 |
Number of phases in the fluid system. More... | |
static constexpr int | numComponents = 2 |
Number of components in the fluid system. More... | |
static constexpr int | liquidPhaseIdx = 0 |
index of the liquid phase More... | |
static constexpr int | gasPhaseIdx = 1 |
index of the gas phase More... | |
static constexpr int | phase0Idx = liquidPhaseIdx |
index of the first phase More... | |
static constexpr int | phase1Idx = gasPhaseIdx |
index of the second phase More... | |
static constexpr int | H2OIdx = 0 |
static constexpr int | N2Idx = 1 |
static constexpr int | comp0Idx = H2OIdx |
index of the first component More... | |
static constexpr int | comp1Idx = N2Idx |
index of the second component More... | |
static constexpr int | liquidCompIdx = H2OIdx |
index of the liquid component More... | |
static constexpr int | gasCompIdx = N2Idx |
index of the gas component More... | |
using Dumux::FluidSystems::H2ON2< Scalar, Policy >::H2O = TabulatedH2O |
using Dumux::FluidSystems::H2ON2< Scalar, Policy >::N2 = SimpleN2 |
|
inherited |
|
inherited |
|
inlinestatic |
compIdx | The index of the component to consider |
|
inlinestaticinherited |
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
compIIdx | Index of the component i |
compJIdx | Index of the component j |
|
inlinestatic |
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
compIIdx | Index of the component i |
compJIdx | Index of the component j |
|
inlinestatic |
fluidState | The fluid state |
phaseIdx | The index of the phase |
componentIdx | The index of the component |
|
inlinestatic |
compIdx | The index of the component to consider |
|
inlinestatic |
compIdx | The index of the component to consider |
|
inlinestatic |
compIdx | The index of the component to consider |
|
inlinestatic |
compIdx | The index of the component to consider |
|
inlinestaticinherited |
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
If Policy::useH2ODensityAsLiquidMixtureDensity() == false, we apply Eq. (7) in Class et al. (2002a) [21]
for the liquid density.
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
|
inlinestaticinherited |
Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law
\[ J = - D \nabla \mu_\kappa \]
where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation
\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]
where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component |
|
inlinestatic |
Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law
\[ J = - D \nabla \mu_\kappa \]
where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation
\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]
where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component |
|
inlinestaticinherited |
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
|
inlinestaticinherited |
The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation
\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component |
|
inlinestatic |
The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation
\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component |
|
inlinestaticconstexprinherited |
phaseIdx | The index of the fluid phase to consider |
|
inlinestaticinherited |
Given a fluid state, an up-to-date parameter cache and a phase index, this method computes the isobaric heat capacity \(c_{p,\alpha}\) of the fluid phase. The isobaric heat capacity is defined as the partial derivative of the specific enthalpy \(h_\alpha\) to the fluid pressure \(p_\alpha\):
\( c_{p,\alpha} = \frac{\partial h_\alpha}{\partial p_\alpha} \)
fluidState | represents all relevant thermodynamic quantities of a fluid system |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
fluidState | represents all relevant thermodynamic quantities of a fluid system |
phaseIdx | Index of the fluid phase |
Given a fluid state, an up-to-date parameter cache and a phase index, this method computes the isobaric heat capacity \(c_{p,\alpha}\) of the fluid phase. The isobaric heat capacity is defined as the partial derivative of the specific enthalpy \(h_\alpha\) to the fluid pressure \(p_\alpha\):
\( c_{p,\alpha} = \frac{\partial h_\alpha}{\partial p_\alpha} \)
|
inlinestatic |
If a tabulated H2O component is used, we do our best to create tables that always work.
|
inlinestatic |
tempMin | The minimum temperature used for tabulation of water \(\mathrm{[K]}\) |
tempMax | The maximum temperature used for tabulation of water \(\mathrm{[K]}\) |
nTemp | The number of ticks on the temperature axis of the table of water |
pressMin | The minimum pressure used for tabulation of water \(\mathrm{[Pa]}\) |
pressMax | The maximum pressure used for tabulation of water \(\mathrm{[Pa]}\) |
nPress | The number of ticks on the pressure axis of the table of water |
|
inlinestaticconstexpr |
Compressible means that the partial derivative of the density to the fluid pressure is always larger than zero.
phaseIdx | The index of the fluid phase to consider |
|
inlinestaticconstexpr |
phaseIdx | The index of the fluid phase to consider |
|
inlinestatic |
phaseIdx | The index of the fluid phase to consider |
|
inlinestatic |
We define an ideal mixture as a fluid phase where the fugacity coefficients of all components times the pressure of the phase are independent on the fluid composition. This assumption is true if Henry's law and Raoult's law apply. If you are unsure what this function should return, it is safe to return false. The only damage done will be (slightly) increased computation times in some cases.
phaseIdx | The index of the fluid phase to consider |
|
inlinestaticconstexpr |
|
inlinestaticconstexprinherited |
If the fluid system only contains tracer components
|
inlinestatic |
Calculate the decreased vapor pressure due to capillarity
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
compIdx | The index of the component to consider |
|
inlinestaticinherited |
The molar density is defined by the mass density \(\rho_\alpha\) and the component molar mass \(M_\alpha\) after
\[\rho_{mol,\alpha} = \frac{\rho_\alpha}{M_\alpha} \;.\]
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
compIdx | The index of the component to consider |
|
inlinestatic |
phaseIdx | The index of the fluid phase to consider |
|
inlinestatic |
Use the conductivity of air and water as a first approximation.
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
|
inlinestaticinherited |
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestaticinherited |
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
Compositional effects in the gas phase are accounted by the Wilke method. See Reid et al. (1987) [72]
4th edition, McGraw-Hill, 1987, 407-410 5th edition, McGraw-Hill, 20001, p. 9.21/22
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
|
inlinestaticconstexprinherited |
phaseIdx | The index of the fluid phase to consider |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |