version 3.11-dev
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages Concepts
velocity.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3//
4// SPDX-FileCopyrightText: Copyright © DuMux Project contributors, see AUTHORS.md in root folder
5// SPDX-License-Identifier: GPL-3.0-or-later
6//
13#ifndef DUMUX_POROUSMEDIUMFLOW_VELOCITY_HH
14#define DUMUX_POROUSMEDIUMFLOW_VELOCITY_HH
15
16#include <vector>
17#include <type_traits>
18
19#include <dune/common/fvector.hh>
20#include <dune/common/float_cmp.hh>
21#include <dune/common/reservedvector.hh>
22#include <dune/geometry/type.hh>
23#include <dune/geometry/referenceelements.hh>
24
29#include <dumux/flux/traits.hh>
30
31namespace Dumux {
32
33#ifndef DOXYGEN
34namespace Detail {
35// helper structs and functions detecting if the model is compositional
36
37template <typename T, typename ...Ts>
38using MoleFractionDetector = decltype(std::declval<T>().moleFraction(std::declval<Ts>()...));
39
40template<class T, typename ...Args>
41static constexpr bool hasMoleFraction()
42{ return Dune::Std::is_detected<MoleFractionDetector, T, Args...>::value; }
43
44template <typename T, typename ...Ts>
45using MassFractionDetector = decltype(std::declval<T>().massFraction(std::declval<Ts>()...));
46
47template<class T, typename ...Args>
48static constexpr bool hasMassFraction()
49{ return Dune::Std::is_detected<MassFractionDetector, T, Args...>::value; }
50
51} // end namespace Detail
52#endif // DOXYGEN
53
58template<class GridVariables, class FluxVariables>
60{
61 using GridGeometry = typename GridVariables::GridGeometry;
62 using Extrusion = Extrusion_t<GridGeometry>;
63 using FVElementGeometry = typename GridGeometry::LocalView;
64 using SubControlVolume = typename GridGeometry::SubControlVolume;
65 using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace;
66 using GridView = typename GridGeometry::GridView;
67 using Element = typename GridView::template Codim<0>::Entity;
68 using GridVolumeVariables = typename GridVariables::GridVolumeVariables;
69 using ElementFluxVarsCache = typename GridVariables::GridFluxVariablesCache::LocalView;
70 using VolumeVariables = typename GridVariables::VolumeVariables;
71 using ElementVolumeVariables = typename GridVolumeVariables::LocalView;
72 using FluidSystem = typename VolumeVariables::FluidSystem;
73 using Scalar = typename GridVariables::Scalar;
74 using FluxTraits = typename Dumux::FluxTraits<FluxVariables>;
75 using AdvectionType = typename FluxVariables::AdvectionType;
76
77 static constexpr int dim = GridView::dimension;
78 static constexpr int dimWorld = GridView::dimensionworld;
79 static constexpr bool isBox = GridGeometry::discMethod == DiscretizationMethods::box;
80 static constexpr bool isDiamond = GridGeometry::discMethod == DiscretizationMethods::fcdiamond;
81 static constexpr bool stationaryVelocityField = FluxTraits::hasStationaryVelocityField();
82
83 using GlobalPosition = typename Element::Geometry::GlobalCoordinate;
84
85 using Problem = typename GridVolumeVariables::Problem;
86
87 static constexpr bool modelIsCompositional = Detail::hasMoleFraction<typename GridVolumeVariables::VolumeVariables, int, int>() ||
88 Detail::hasMassFraction<typename GridVolumeVariables::VolumeVariables, int, int>();
89
90 static_assert(VolumeVariables::numFluidPhases() >= 1, "Velocity output only makes sense for models with fluid phases.");
91
92 using Velocity = Dune::FieldVector<Scalar, dimWorld>;
93 using ReferenceElementVelocity = Dune::FieldVector<Scalar, dim>;
94public:
95 static constexpr int numFluidPhases = VolumeVariables::numFluidPhases();
96 using VelocityVector = std::vector<Velocity>;
97
103 PorousMediumFlowVelocity(const GridVariables& gridVariables)
104 : problem_(gridVariables.curGridVolVars().problem())
105 , gridGeometry_(gridVariables.gridGeometry())
106 , gridVariables_(gridVariables)
107 {
108 // set the number of scvs the vertices are connected to
109 if constexpr (isBox && dim > 1)
110 {
111 // resize to the number of vertices of the grid
112 cellNum_.assign(gridGeometry_.gridView().size(dim), 0);
113
114 for (const auto& element : elements(gridGeometry_.gridView()))
115 for (unsigned int vIdx = 0; vIdx < element.subEntities(dim); ++vIdx)
116 ++cellNum_[gridGeometry_.vertexMapper().subIndex(element, vIdx, dim)];
117 }
118 }
119
123 const Element& element,
124 const FVElementGeometry& fvGeometry,
125 const ElementVolumeVariables& elemVolVars,
126 const ElementFluxVarsCache& elemFluxVarsCache,
127 int phaseIdx) const
128 {
129 const auto geometry = element.geometry();
130 const Dune::GeometryType geomType = geometry.type();
131
132 // the upwind term to be used for the volume flux evaluation
133 auto upwindTerm = [phaseIdx](const auto& volVars) { return volVars.mobility(phaseIdx); };
134
135 if constexpr (isBox && dim == 1)
136 {
137 Velocity tmpVelocity(0.0);
138 tmpVelocity = (geometry.corner(1) - geometry.corner(0));
139 tmpVelocity /= tmpVelocity.two_norm();
140
141 for (auto&& scvf : scvfs(fvGeometry))
142 {
143 if (scvf.boundary())
144 continue;
145
146 // instantiate the flux variables
147 FluxVariables fluxVars;
148 fluxVars.init(problem_, element, fvGeometry, elemVolVars, scvf, elemFluxVarsCache);
149
150 // get the volume flux divided by the area of the
151 // subcontrolvolume face in the reference element
152 Scalar localArea = scvfReferenceArea_(geomType, scvf.index());
153 Scalar flux = fluxVars.advectiveFlux(phaseIdx, upwindTerm) / localArea;
154 const auto& insideVolVars = elemVolVars[scvf.insideScvIdx()];
155 flux /= insideVolVars.extrusionFactor() * Extrusion::area(fvGeometry, scvf) / scvf.area();
156 tmpVelocity *= flux;
157
158 const int eIdxGlobal = gridGeometry_.elementMapper().index(element);
159 velocity[eIdxGlobal] = tmpVelocity;
160 }
161 return;
162 }
163
164 // get the transposed Jacobian of the element mapping
165 using Dune::referenceElement;
166 const auto localPos = referenceElement(geometry).position(0, 0);
167 const auto jacobianT2 = geometry.jacobianTransposed(localPos);
168
169 if constexpr (isBox)
170 {
171 using ScvVelocities = Dune::BlockVector<Velocity>;
172 ScvVelocities scvVelocities(fvGeometry.numScv());
173 scvVelocities = 0;
174
175 for (auto&& scvf : scvfs(fvGeometry))
176 {
177 if (scvf.boundary())
178 continue;
179
180 // local position of integration point
181 const auto localPosIP = geometry.local(scvf.ipGlobal());
182
183 // Transformation of the global normal vector to normal vector in the reference element
184 const auto jacobianT1 = geometry.jacobianTransposed(localPosIP);
185 const auto globalNormal = scvf.unitOuterNormal();
186 GlobalPosition localNormal(0);
187 jacobianT1.mv(globalNormal, localNormal);
188 localNormal /= localNormal.two_norm();
189
190 // instantiate the flux variables
191 FluxVariables fluxVars;
192 fluxVars.init(problem_, element, fvGeometry, elemVolVars, scvf, elemFluxVarsCache);
193
194 // get the volume flux divided by the area of the
195 // subcontrolvolume face in the reference element
196 Scalar localArea = scvfReferenceArea_(geomType, scvf.index());
197 Scalar flux = fluxVars.advectiveFlux(phaseIdx, upwindTerm) / localArea;
198 const auto& insideVolVars = elemVolVars[scvf.insideScvIdx()];
199 flux /= insideVolVars.extrusionFactor() * Extrusion::area(fvGeometry, scvf) / scvf.area();
200
201 // transform the volume flux into a velocity vector
202 Velocity tmpVelocity = localNormal;
203 tmpVelocity *= flux;
204
205 scvVelocities[scvf.insideScvIdx()] += tmpVelocity;
206 scvVelocities[scvf.outsideScvIdx()] += tmpVelocity;
207 }
208
209 // transform vertex velocities from local to global coordinates
210 for (auto&& scv : scvs(fvGeometry))
211 {
212 int vIdxGlobal = scv.dofIndex();
213
214 // calculate the subcontrolvolume velocity by the Piola transformation
215 Velocity scvVelocity(0);
216
217 jacobianT2.mtv(scvVelocities[scv.indexInElement()], scvVelocity);
218 scvVelocity /= geometry.integrationElement(localPos)*cellNum_[vIdxGlobal];
219 // add up the wetting phase subcontrolvolume velocities for each vertex
220 velocity[vIdxGlobal] += scvVelocity;
221 }
222 }
223 else if constexpr (isDiamond)
224 DUNE_THROW(Dune::NotImplemented, "Velocity output with diamond discretization");
225 else
226 {
227 // For the number of scvfs per facet (mpfa) we simply obtain the number of
228 // corners of the first facet as prisms/pyramids are not supported here anyway
229 // -> for prisms/pyramids the number of scvfs would differ from facet to facet
230 static constexpr bool isMpfa = GridGeometry::discMethod == DiscretizationMethods::ccmpfa;
231 const int numScvfsPerFace = isMpfa ? element.template subEntity<1>(0).geometry().corners() : 1;
232
233 if (fvGeometry.numScvf() != element.subEntities(1)*numScvfsPerFace)
234 DUNE_THROW(Dune::NotImplemented, "Velocity output for non-conforming grids");
235
236 if (!geomType.isCube() && !geomType.isSimplex())
237 DUNE_THROW(Dune::NotImplemented, "Velocity output for other geometry types than cube and simplex");
238
239 // first we extract the corner indices for each scv for the CIV method
240 // for network grids there might be multiple intersection with the same geometryInInside
241 // we identify those by the indexInInside for now (assumes conforming grids at branching facets)
242 // here we keep track of them
243 std::vector<bool> handledScvf;
244 if (dim < dimWorld)
245 handledScvf.resize(element.subEntities(1), false);
246
247 // find the local face indices of the scvfs (for conforming meshes)
248 std::vector<unsigned int> scvfIndexInInside(fvGeometry.numScvf());
249 int localScvfIdx = 0;
250 for (const auto& intersection : intersections(gridGeometry_.gridView(), element))
251 {
252 if (dim < dimWorld)
253 if (handledScvf[intersection.indexInInside()])
254 continue;
255
256 if (intersection.neighbor() || intersection.boundary())
257 {
258 for (int i = 0; i < numScvfsPerFace; ++i)
259 scvfIndexInInside[localScvfIdx++] = intersection.indexInInside();
260
261 // for surface and network grids mark that we handled this face
262 if (dim < dimWorld)
263 handledScvf[intersection.indexInInside()] = true;
264 }
265 }
266
267 Dune::ReservedVector<Scalar, 2*dim> scvfFluxes(element.subEntities(1), 0.0);
268 localScvfIdx = 0;
269 for (auto&& scvf : scvfs(fvGeometry))
270 {
271 const auto& insideVolVars = elemVolVars[scvf.insideScvIdx()];
272 if (!scvf.boundary())
273 {
274 FluxVariables fluxVars;
275 fluxVars.init(problem_, element, fvGeometry, elemVolVars, scvf, elemFluxVarsCache);
276 scvfFluxes[scvfIndexInInside[localScvfIdx]] += fluxVars.advectiveFlux(phaseIdx, upwindTerm)/insideVolVars.extrusionFactor();
277 }
278 else
279 {
280 auto bcTypes = problem_.boundaryTypes(element, scvf);
281 if (bcTypes.hasOnlyDirichlet())
282 {
283 FluxVariables fluxVars;
284 fluxVars.init(problem_, element, fvGeometry, elemVolVars, scvf, elemFluxVarsCache);
285 scvfFluxes[scvfIndexInInside[localScvfIdx]] += fluxVars.advectiveFlux(phaseIdx, upwindTerm)/insideVolVars.extrusionFactor();
286 }
287 }
288
289 // increment scvf counter
290 localScvfIdx++;
291 }
292
293 // Correct boundary fluxes in case of Neumann conditions.
294 // In this general setting, it would be very difficult to
295 // calculate correct phase, i.e., volume, fluxes from arbitrary
296 // Neumann conditions. We approximate the Neumann flux by the
297 // flux on the opposite face. For extremely distorted grids this can
298 // lead to unexpected results (but then TPFA also leads to unexpected results).
299 localScvfIdx = 0;
300 for (auto&& scvf : scvfs(fvGeometry))
301 {
302 if (scvf.boundary())
303 {
304 auto bcTypes = problem_.boundaryTypes(element, scvf);
305 if (bcTypes.hasNeumann())
306 {
307 // for stationary velocity fields we can easily compute the correct velocity
308 // this special treatment makes sure that the velocity field is also correct on Neumann boundaries
309 // of tracer problems where the velocity field is given.
310 // (For Dirichlet boundaries no special treatment is necessary.)
311 if (stationaryVelocityField)
312 {
313 const auto flux = AdvectionType::flux(problem_, element, fvGeometry, elemVolVars,
314 scvf, phaseIdx, elemFluxVarsCache);
315
316 const auto& insideVolVars = elemVolVars[scvf.insideScvIdx()];
317 scvfFluxes[scvfIndexInInside[localScvfIdx]] += flux / insideVolVars.extrusionFactor();
318 }
319 else
320 {
321 // check if we have Neumann no flow, we can just use 0
322 const auto neumannFlux = problem_.neumann(element, fvGeometry, elemVolVars, elemFluxVarsCache, scvf);
323 using NumEqVector = std::decay_t<decltype(neumannFlux)>;
324 if (Dune::FloatCmp::eq<NumEqVector, Dune::FloatCmp::CmpStyle::absolute>(neumannFlux, NumEqVector(0.0), 1e-30))
325 scvfFluxes[scvfIndexInInside[localScvfIdx]] = 0;
326
327 // otherwise, we try some reconstruction
328 // for cubes
329 else if (dim == 1 || geomType.isCube())
330 {
331 const auto fIdx = scvfIndexInInside[localScvfIdx];
332
333 if constexpr (!modelIsCompositional)
334 {
335 // We assume that the density at the face equals the one at the cell center and reconstruct a volume flux from the Neumann mass flux.
336 const auto& insideVolVars = elemVolVars[scvf.insideScvIdx()];
337 const auto eqIdx = VolumeVariables::Indices::conti0EqIdx + phaseIdx;
338 scvfFluxes[fIdx] += neumannFlux[eqIdx] / insideVolVars.density(phaseIdx) * scvf.area();
339 }
340 else
341 {
342 // For compositional models, we generally can't reconstruct the volume flow from the Neumann flux (which is a species flux rather
343 // than a phase flux here). Instead, we use the velocity of the opposing face.
344 const auto fIdxOpposite = fIdx%2 ? fIdx-1 : fIdx+1;
345 scvfFluxes[fIdx] = -scvfFluxes[fIdxOpposite];
346 }
347 }
348
349 // for simplices
350 else if (geomType.isSimplex())
351 scvfFluxes[scvfIndexInInside[localScvfIdx]] = 0;
352
353 else
354 DUNE_THROW(Dune::NotImplemented, "Velocity computation at Neumann boundaries for cell-centered and prism/pyramid");
355 }
356 }
357 }
358
359 // increment scvf counter
360 localScvfIdx++;
361 }
362
363
364 ReferenceElementVelocity refVelocity;
365 // cubes: On the reference element simply average over opposite fluxes
366 // note that this is equal to a corner velocity interpolation method
367 if (dim == 1 || geomType.isCube())
368 {
369 assert(scvfFluxes.size() == 2*dim);
370 for (int i = 0; i < dim; ++i)
371 refVelocity[i] = 0.5 * (scvfFluxes[2*i + 1] - scvfFluxes[2*i]);
372 }
373
374 // simplices: Raviart-Thomas-0 interpolation evaluated at the cell center
375 else if (geomType.isSimplex())
376 {
377 assert(scvfFluxes.size() == dim+1);
378 for (int i = 0; i < dim; ++i)
379 {
380 refVelocity[i] = -scvfFluxes[dim - 1 - i];
381 for (int fIdx = 0; fIdx < dim + 1; ++fIdx)
382 refVelocity[i] += scvfFluxes[fIdx]/(dim + 1);
383 }
384 }
385
386 // 3D prism and pyramids
387 else
388 DUNE_THROW(Dune::NotImplemented, "Velocity computation for cell-centered and prism/pyramid");
389
390 Velocity scvVelocity(0);
391 jacobianT2.mtv(refVelocity, scvVelocity);
392
393 scvVelocity /= geometry.integrationElement(localPos);
394
395 int eIdxGlobal = gridGeometry_.elementMapper().index(element);
396
397 velocity[eIdxGlobal] = scvVelocity;
398
399 } // cell-centered
400 }
401
402private:
403 // The area of a subcontrolvolume face in a reference element.
404 // The 3d non-cube values have been calculated with quadrilateralArea3D
405 // of boxfvelementgeometry.hh.
406 static Scalar scvfReferenceArea_(Dune::GeometryType geomType, int fIdx)
407 {
408 if (dim == 1 || geomType.isCube())
409 {
410 return 1.0/(1 << (dim-1));
411 }
412 else if (geomType.isTriangle())
413 {
414 static const Scalar faceToArea[] = {0.372677996249965,
415 0.372677996249965,
416 0.235702260395516};
417 return faceToArea[fIdx];
418 }
419 else if (geomType.isTetrahedron())
420 {
421 static const Scalar faceToArea[] = {0.102062072615966,
422 0.102062072615966,
423 0.058925565098879,
424 0.102062072615966,
425 0.058925565098879,
426 0.058925565098879};
427 return faceToArea[fIdx];
428 }
429 else if (geomType.isPyramid())
430 {
431 static const Scalar faceToArea[] = {0.130437298687488,
432 0.130437298687488,
433 0.130437298687488,
434 0.130437298687488,
435 0.150923085635624,
436 0.1092906420717,
437 0.1092906420717,
438 0.0781735959970571};
439 return faceToArea[fIdx];
440 }
441 else if (geomType.isPrism())
442 {
443 static const Scalar faceToArea[] = {0.166666666666667,
444 0.166666666666667,
445 0.166666666666667,
446 0.186338998124982,
447 0.186338998124982,
448 0.117851130197758,
449 0.186338998124982,
450 0.186338998124982,
451 0.117851130197758};
452 return faceToArea[fIdx];
453 }
454 else {
455 DUNE_THROW(Dune::NotImplemented, "scvf area for unknown GeometryType");
456 }
457 }
458
459private:
460 const Problem& problem_;
461 const GridGeometry& gridGeometry_;
462 const GridVariables& gridVariables_;
463
464 std::vector<int> cellNum_;
465};
466
467} // end namespace Dumux
468
469#endif
Velocity computation for implicit (porous media) models.
Definition: velocity.hh:60
void calculateVelocity(VelocityVector &velocity, const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const ElementFluxVarsCache &elemFluxVarsCache, int phaseIdx) const
Definition: velocity.hh:122
PorousMediumFlowVelocity(const GridVariables &gridVariables)
Constructor initializes the static data with the initial solution.
Definition: velocity.hh:103
std::vector< Velocity > VelocityVector
Definition: velocity.hh:96
static constexpr int numFluidPhases
Definition: velocity.hh:95
Element solution classes and factory functions.
Helper classes to compute the integration elements.
Defines the flux traits.
typename NumEqVectorTraits< PrimaryVariables >::type NumEqVector
A vector with the same size as numbers of equations This is the default implementation and has to be ...
Definition: numeqvector.hh:34
The available discretization methods in Dumux.
constexpr CCMpfa ccmpfa
Definition: method.hh:146
constexpr FCDiamond fcdiamond
Definition: method.hh:152
constexpr Box box
Definition: method.hh:147
Definition: adapt.hh:17
typename Extrusion< T >::type Extrusion_t
Convenience alias for obtaining the extrusion type.
Definition: extrusion.hh:166
The infrastructure to retrieve run-time parameters from Dune::ParameterTrees.
Traits of a flux variables type.
Definition: flux/traits.hh:32
static constexpr bool hasStationaryVelocityField()
Definition: flux/traits.hh:33