version 3.11-dev
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Modules Pages Concepts
h2o.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3//
4// SPDX-FileCopyrightText: Copyright © DuMux Project contributors, see AUTHORS.md in root folder
5// SPDX-License-Identifier: GPL-3.0-or-later
6//
12#ifndef DUMUX_H2O_HH
13#define DUMUX_H2O_HH
14
15#include <cmath>
16#include <cassert>
17
21
22#include "iapws/common.hh"
23#include "iapws/region1.hh"
24#include "iapws/region2.hh"
25#include "iapws/region4.hh"
26
30
31namespace Dumux::Components {
32
43template <class Scalar>
44class H2O
45: public Components::Base<Scalar, H2O<Scalar> >
46, public Components::Liquid<Scalar, H2O<Scalar> >
47, public Components::Gas<Scalar, H2O<Scalar> >
48{
49
54
55 // specific gas constant of water
56 static constexpr Scalar Rs = Common::Rs;
57
58public:
62 static std::string name()
63 { return "H2O"; }
64
68 static constexpr Scalar molarMass()
69 { return Common::molarMass; }
70
74 static constexpr Scalar acentricFactor()
75 { return Common::acentricFactor; }
76
80 static constexpr Scalar criticalTemperature()
82
86 static constexpr Scalar criticalPressure()
87 { return Common::criticalPressure; }
88
92 static constexpr Scalar criticalMolarVolume()
94
98 static constexpr Scalar tripleTemperature()
100
104 static constexpr Scalar triplePressure()
105 { return Common::triplePressure; }
106
119 {
120 using std::min;
121 using std::max;
122 T = min(T, criticalTemperature());
123 T = max(T,tripleTemperature());
124
126 }
127
140 {
141 using std::min;
142 using std::max;
145
147 }
148
162 {
164
165 // regularization
166 if (pressure < triplePressure() - 100) {
167 // We assume an ideal gas for low pressures to avoid the
168 // 0/0 for the gas enthalpy at very low pressures. The
169 // enthalpy of an ideal gas does not exhibit any
170 // dependence on pressure, so we can just return the
171 // specific enthalpy at the point of regularization, i.e.
172 // the triple pressure - 100Pa
173 return enthalpyRegion2_(temperature, triplePressure() - 100);
174 }
176 if (pressure > pv) {
177 // the pressure is too high, in this case we use the slope
178 // of the enthalpy at the vapor pressure to regularize
179 Scalar dh_dp =
180 Rs*temperature*
182 Region2::dPi_dp(pv)*
184
185 return
186 enthalpyRegion2_(temperature, pv) +
187 (pressure - pv)*dh_dp;
188 }
189
190 return enthalpyRegion2_(temperature, pressure);
191 }
192
206 {
208
209 // regularization
211 if (pressure < pv) {
212 // the pressure is too low, in this case we use the slope
213 // of the enthalpy at the vapor pressure to regularize
214 Scalar dh_dp =
215 Rs * temperature*
217 Region1::dPi_dp(pv)*
219
220 return
221 enthalpyRegion1_(temperature, pv) +
222 (pressure - pv)*dh_dp;
223 }
224
225 return enthalpyRegion1_(temperature, pressure);
226 }
227
241 {
243
244 // regularization
245 if (pressure < triplePressure() - 100) {
246 return heatCap_p_Region2_(temperature, triplePressure() - 100);
247 }
249 if (pressure > pv) {
250 // the pressure is too high, in this case we use the heat
251 // cap at the vapor pressure to regularize
252 return heatCap_p_Region2_(temperature, pv);
253 }
254 return heatCap_p_Region2_(temperature, pressure);
255 }
256
270 {
272
273 // regularization
275 if (pressure < pv) {
276 // the pressure is too low, in this case we use the heat cap at the vapor pressure to regularize
277 return heatCap_p_Region1_(temperature, pv);
278 }
279
280 return heatCap_p_Region1_(temperature, pressure);
281 }
282
296 {
298
299 // regularization
301 if (pressure < pv) {
302 // the pressure is too low, in this case we use the slope
303 // of the internal energy at the vapor pressure to
304 // regularize
305
306 /*
307 // calculate the partial derivative of the internal energy
308 // to the pressure at the vapor pressure.
309 Scalar tau = Region1::tau(temperature);
310 Scalar dGamma_dPi = Region1::dGamma_dPi(temperature, pv);
311 Scalar ddGamma_dTaudPi = Region1::ddGamma_dTaudPi(temperature, pv);
312 Scalar ddGamma_ddPi = Region1::ddGamma_ddPi(temperature, pv);
313 Scalar pi = Region1::pi(pv);
314 Scalar dPi_dp = Region1::dPi_dp(pv);
315 Scalar du_dp =
316 Rs*temperature*
317 (tau*dPi_dp*ddGamma_dTaudPi + dPi_dp*dPi_dp*dGamma_dPi + pi*dPi_dp*ddGamma_ddPi);
318 */
319
320 // use a straight line for extrapolation. use forward
321 // differences to calculate the partial derivative to the
322 // pressure at the vapor pressure
323 static const Scalar eps = 1e-7;
324 Scalar uv = internalEnergyRegion1_(temperature, pv);
325 Scalar uvPEps = internalEnergyRegion1_(temperature, pv + eps);
326 Scalar du_dp = (uvPEps - uv)/eps;
327 return uv + du_dp*(pressure - pv);
328 }
329
330 return internalEnergyRegion1_(temperature, pressure);
331 }
332
345 {
347
348 // regularization
349 if (pressure < triplePressure() - 100) {
350 // We assume an ideal gas for low pressures to avoid the
351 // 0/0 for the internal energy of gas at very low
352 // pressures. The enthalpy of an ideal gas does not
353 // exhibit any dependence on pressure, so we can just
354 // return the specific enthalpy at the point of
355 // regularization, i.e. the triple pressure - 100Pa, and
356 // subtract the work required to change the volume for an
357 // ideal gas.
358 return
359 enthalpyRegion2_(temperature, triplePressure() - 100)
360 -
361 Rs*temperature; // = p*v for an ideal gas!
362 }
364 if (pressure > pv) {
365 // the pressure is too high, in this case we use the slope
366 // of the internal energy at the vapor pressure to
367 // regularize
368
369 /*
370 // calculate the partial derivative of the internal energy
371 // to the pressure at the vapor pressure.
372 Scalar tau = Region2::tau(temperature);
373 Scalar dGamma_dPi = Region2::dGamma_dPi(temperature, pv);
374 Scalar ddGamma_dTaudPi = Region2::ddGamma_dTaudPi(temperature, pv);
375 Scalar ddGamma_ddPi = Region2::ddGamma_ddPi(temperature, pv);
376 Scalar pi = Region2::pi(pv);
377 Scalar dPi_dp = Region2::dPi_dp(pv);
378 Scalar du_dp =
379 Rs*temperature*
380 (tau*dPi_dp*ddGamma_dTaudPi + dPi_dp*dPi_dp*dGamma_dPi + pi*dPi_dp*ddGamma_ddPi);
381
382 // use a straight line for extrapolation
383 Scalar uv = internalEnergyRegion2_(temperature, pv);
384 return uv + du_dp*(pressure - pv);
385 */
386
387 // use a straight line for extrapolation. use backward
388 // differences to calculate the partial derivative to the
389 // pressure at the vapor pressure
390 static const Scalar eps = 1e-7;
391 Scalar uv = internalEnergyRegion2_(temperature, pv);
392 Scalar uvMEps = internalEnergyRegion2_(temperature, pv - eps);
393 Scalar du_dp = (uv - uvMEps)/eps;
394 return uv + du_dp*(pressure - pv);
395 }
396
397 return internalEnergyRegion2_(temperature, pressure);
398 }
399
413 {
414 Region1::checkValidityRange(temperature, pressure, "Heat capacity for a constant volume");
415
416 // regularization
418 if (pressure < pv) {
419 // the pressure is too low, in this case we use the heat cap at the vapor pressure to regularize
420
421 return heatCap_v_Region1_(temperature, pv);
422 }
423
424 return heatCap_v_Region1_(temperature, pressure);
425 }
426
440 {
441 Region2::checkValidityRange(temperature, pressure, "Heat capacity for a constant volume");
442
443 // regularization
444 if (pressure < triplePressure() - 100) {
445 return
446 heatCap_v_Region2_(temperature, triplePressure() - 100);
447 }
449 if (pressure > pv) {
450 return heatCap_v_Region2_(temperature, pv);
451 }
452
453 return heatCap_v_Region2_(temperature, pressure);
454 }
455
459 static constexpr bool gasIsCompressible()
460 { return true; }
461
465 static constexpr bool liquidIsCompressible()
466 { return true; }
467
481 {
483
484 // regularization
485 if (pressure < triplePressure() - 100) {
486 // We assume an ideal gas for low pressures to avoid the
487 // 0/0 for the internal energy and enthalpy.
488 Scalar rho0IAPWS = 1.0/volumeRegion2_(temperature,
489 triplePressure() - 100);
492 triplePressure() - 100);
493 return
494 rho0IAPWS/rho0Id *
497 pressure);
498 }
500 if (pressure > pv) {
501 // the pressure is too high, in this case we use the slope
502 // of the density energy at the vapor pressure to
503 // regularize
504
505 // calculate the partial derivative of the specific volume
506 // to the pressure at the vapor pressure.
507 const Scalar eps = pv*1e-8;
508 Scalar v0 = volumeRegion2_(temperature, pv);
509 Scalar v1 = volumeRegion2_(temperature, pv + eps);
510 Scalar dv_dp = (v1 - v0)/eps;
511 /*
512 Scalar pi = Region2::pi(pv);
513 Scalar dp_dPi = Region2::dp_dPi(pv);
514 Scalar dGamma_dPi = Region2::dGamma_dPi(temperature, pv);
515 Scalar ddGamma_ddPi = Region2::ddGamma_ddPi(temperature, pv);
516
517 Scalar RT = Rs*temperature;
518 Scalar dv_dp =
519 RT/(dp_dPi*pv)
520 *
521 (dGamma_dPi + pi*ddGamma_ddPi - v0*dp_dPi/RT);
522 */
523
524 // calculate the partial derivative of the density to the
525 // pressure at vapor pressure
526 Scalar drho_dp = - 1/(v0*v0)*dv_dp;
527
528 // use a straight line for extrapolation
529 return 1.0/v0 + (pressure - pv)*drho_dp;
530 }
531
532 return 1.0/volumeRegion2_(temperature, pressure);
533 }
534
544
548 static constexpr bool gasIsIdeal()
549 { return false; }
550
564 {
565 // We use the newton method for this. For the initial value we
566 // assume steam to be an ideal gas
568 Scalar eps = pressure*1e-7;
569
570 Scalar deltaP = pressure*2;
571 using std::abs;
572 for (int i = 0; i < 5 && abs(pressure*1e-9) < abs(deltaP); ++i)
573 {
575
576 Scalar df_dp;
577 df_dp = gasDensity(temperature, pressure + eps);
578 df_dp -= gasDensity(temperature, pressure - eps);
579 df_dp /= 2*eps;
580
581 deltaP = - f/df_dp;
582
583 pressure += deltaP;
584 }
585
586 return pressure;
587 }
588
602 {
604
605 // regularization
607 if (pressure < pv) {
608 // the pressure is too low, in this case we use the slope
609 // of the density at the vapor pressure to regularize
610
611 // calculate the partial derivative of the specific volume
612 // to the pressure at the vapor pressure.
613 const Scalar eps = pv*1e-8;
614 Scalar v0 = volumeRegion1_(temperature, pv);
615 Scalar v1 = volumeRegion1_(temperature, pv + eps);
616 Scalar dv_dp = (v1 - v0)/eps;
617
618 /*
619 Scalar v0 = volumeRegion1_(temperature, pv);
620 Scalar pi = Region1::pi(pv);
621 Scalar dp_dPi = Region1::dp_dPi(pv);
622 Scalar dGamma_dPi = Region1::dGamma_dPi(temperature, pv);
623 Scalar ddGamma_ddPi = Region1::ddGamma_ddPi(temperature, pv);
624
625 Scalar RT = Rs*temperature;
626 Scalar dv_dp =
627 RT/(dp_dPi*pv)
628 *
629 (dGamma_dPi + pi*ddGamma_ddPi - v0*dp_dPi/RT);
630 */
631
632 // calculate the partial derivative of the density to the
633 // pressure at vapor pressure
634 Scalar drho_dp = - 1/(v0*v0)*dv_dp;
635
636 // use a straight line for extrapolation
637 return 1.0/v0 + (pressure - pv)*drho_dp;
638 }
639
640 return 1/volumeRegion1_(temperature, pressure);
641 }
642
652
667 {
668 // We use Brent's method for this, with a pressure range including the surroundings of the
669 // vapor pressure line
670 Scalar minPressure = vaporPressure(temperature)/1.11;
671 Scalar maxPressure = 100e6;
672 const auto residualFunction = [&] (const Scalar pressure) {
674 };
675 try
676 {
677 return findScalarRootBrent(minPressure, maxPressure, residualFunction);
678 }
679 catch (const NumericalProblem& e)
680 {
681 DUNE_THROW(NumericalProblem,
682 "searched for pressure(T=" << temperature << ",rho=" << density
683 <<") in [" << minPressure << ", " << maxPressure << "]: "
684 << e.what());
685 }
686 }
687
704 {
706
708 return Common::viscosity(temperature, rho);
709 }
710
711
723 {
725
727 return Common::viscosity(temperature, rho);
728 }
729
746 {
747 // Thermal conductivity of water is empirically fit.
748 // Evaluating that fitting-function outside the area of validity does not make sense.
749 if ( !( (pressure <= 400e6 && (273.15 <= temperature) && (temperature <= 398.15))
750 || (pressure <= 200e6 && (398.15 < temperature) && (temperature <= 523.15))
751 || (pressure <= 150e6 && (523.15 < temperature) && (temperature <= 673.15))
752 || (pressure <= 100e6 && (673.15 < temperature) && (temperature <= 1073.15)) ))
753 {
754 DUNE_THROW(NumericalProblem,
755 "Evaluating the IAPWS fit function for thermal conductivity outside range of applicability."
756 "(T=" << temperature << ", p=" << pressure << ")");
757 }
758
761 }
762
779 {
780 // Thermal conductivity of water is empirically fit.
781 // Evaluating that fitting-function outside the area of validity does not make sense.
782 if ( !( (pressure <= 400e6 && (273.15 <= temperature) && (temperature <= 398.15))
783 || (pressure <= 200e6 && (398.15 < temperature) && (temperature <= 523.15))
784 || (pressure <= 150e6 && (523.15 < temperature) && (temperature <= 673.15))
785 || (pressure <= 100e6 && (673.15 < temperature) && (temperature <= 1073.15)) ))
786 {
787 DUNE_THROW(NumericalProblem,
788 "Evaluating the IAPWS fit function for thermal conductivity outside range of applicability."
789 "(T=" << temperature << ", p=" << pressure << ")");
790 }
791
794 }
795
796private:
797 // the unregularized specific enthalpy for liquid water
798 static constexpr Scalar enthalpyRegion1_(Scalar temperature, Scalar pressure)
799 {
800 return
803 Rs*temperature;
804 }
805
806 // the unregularized specific isobaric heat capacity
807 static constexpr Scalar heatCap_p_Region1_(Scalar temperature, Scalar pressure)
808 {
809 return
812 Rs;
813 }
814
815 // the unregularized specific isochoric heat capacity
816 static Scalar heatCap_v_Region1_(Scalar temperature, Scalar pressure)
817 {
821
822 return
823 - tau * tau *
825 diff;
826 }
827
828 // the unregularized specific internal energy for liquid water
829 static constexpr Scalar internalEnergyRegion1_(Scalar temperature, Scalar pressure)
830 {
831 return
832 Rs * temperature *
835 }
836
837 // the unregularized specific volume for liquid water
838 static constexpr Scalar volumeRegion1_(Scalar temperature, Scalar pressure)
839 {
840 return
843 Rs * temperature / pressure;
844 }
845
846 // the unregularized specific enthalpy for steam
847 static constexpr Scalar enthalpyRegion2_(Scalar temperature, Scalar pressure)
848 {
849 return
852 Rs*temperature;
853 }
854
855 // the unregularized specific internal energy for steam
856 static constexpr Scalar internalEnergyRegion2_(Scalar temperature, Scalar pressure)
857 {
858 return
859 Rs * temperature *
862 }
863
864 // the unregularized specific isobaric heat capacity
865 static constexpr Scalar heatCap_p_Region2_(Scalar temperature, Scalar pressure)
866 {
867 return
870 Rs;
871 }
872
873 // the unregularized specific isochoric heat capacity
874 static Scalar heatCap_v_Region2_(Scalar temperature, Scalar pressure)
875 {
879 Scalar diff = num * num / (1 - pi * pi * Region2::ddGamma_ddPi(temperature, pressure));
880 return
881 - tau * tau *
883 - diff;
884 }
885
886 // the unregularized specific volume for steam
887 static constexpr Scalar volumeRegion2_(Scalar temperature, Scalar pressure)
888 {
889 return
892 Rs * temperature / pressure;
893 }
894};
895
896template <class Scalar>
897struct IsAqueous<H2O<Scalar>> : public std::true_type {};
898
899} // end namespace Dumux::Components
900
902
903// viscosity according to Reid, R.C.
904template <class Scalar>
906{
907 constexpr Scalar tc = 647.3;
908 using std::max;
909 const Scalar tr = max(temperature/tc, 1e-8);
910
911 const Scalar fp0 = 1.0 + 0.221*(0.96 + 0.1*(tr - 0.7));
912 constexpr Scalar xi = 3.334e-3;
913 using std::pow;
914 using std::exp;
915 const Scalar eta_xi = (0.807*pow(tr, 0.618) - 0.357*exp((-0.449)*tr)
916 + 0.34*exp((-4.058)*tr) + 0.018)*fp0;
917
918 return 1.0e-7*eta_xi/xi;
919}
920
921// viscosity according to Nagel, T. et al.
922template <class Scalar>
924{
925 constexpr Scalar a1 = -4.4189440e-6;
926 constexpr Scalar a2 = 4.6876380e-8;
927 constexpr Scalar a3 = -5.3894310e-12;
928 constexpr Scalar a4 = 3.2028560e-16;
929 constexpr Scalar a5 = 4.9191790e-22;
930
931 return a1 + a2*temperature + a3*temperature*temperature
934}
935
936} // end Dumux::FluidSystems::Detail
937
938namespace Dumux::FluidSystems {
939
963template <class Scalar>
965{
966 if (temperature < 480.0)
968
969 else if (temperature > 500.0)
971
972 else // interpolate
973 {
974 const Scalar op = (500.0 - temperature)/20.0;
975
978 }
979}
980
981} // end namespace Dumux::FluidSystems
982
983#endif
Base class for all components Components provide the thermodynamic relations for the liquid,...
Definition: components/base.hh:46
Scalar Scalar
export the scalar type used by the component
Definition: components/base.hh:50
Interface for components that have a gas state.
Definition: gas.hh:28
Material properties of pure water .
Definition: h2o.hh:48
static Scalar liquidViscosity(Scalar temperature, Scalar pressure)
The dynamic viscosity of pure water.
Definition: h2o.hh:722
static Scalar vaporTemperature(Scalar pressure)
The vapor temperature in of pure water at a given pressure.
Definition: h2o.hh:139
static Scalar liquidPressure(Scalar temperature, Scalar density)
The pressure of liquid water in at a given density and temperature.
Definition: h2o.hh:666
static Scalar liquidThermalConductivity(Scalar temperature, Scalar pressure)
Thermal conductivity of water (IAPWS) .
Definition: h2o.hh:745
static const Scalar liquidInternalEnergy(Scalar temperature, Scalar pressure)
Specific internal energy of liquid water .
Definition: h2o.hh:294
static Scalar gasHeatCapacityConstVolume(Scalar temperature, Scalar pressure)
Specific isochoric heat capacity of steam and water vapor .
Definition: h2o.hh:439
static constexpr bool gasIsIdeal()
Returns true if the gas phase is assumed to be ideal.
Definition: h2o.hh:548
static Scalar gasViscosity(Scalar temperature, Scalar pressure)
The dynamic viscosity of steam.
Definition: h2o.hh:703
static const Scalar liquidHeatCapacity(Scalar temperature, Scalar pressure)
Specific isobaric heat capacity of liquid water .
Definition: h2o.hh:268
static const Scalar liquidEnthalpy(Scalar temperature, Scalar pressure)
Specific enthalpy of liquid water .
Definition: h2o.hh:204
static Scalar liquidDensity(Scalar temperature, Scalar pressure)
The density of pure water in at a given pressure and temperature.
Definition: h2o.hh:601
static const Scalar gasEnthalpy(Scalar temperature, Scalar pressure)
Specific enthalpy of water steam .
Definition: h2o.hh:160
static Scalar gasDensity(Scalar temperature, Scalar pressure)
The density of steam in at a given pressure and temperature.
Definition: h2o.hh:480
static Scalar liquidMolarDensity(Scalar temperature, Scalar pressure)
The molar density of water in at a given pressure and temperature.
Definition: h2o.hh:650
static constexpr Scalar acentricFactor()
The acentric factor of water.
Definition: h2o.hh:74
static Scalar vaporPressure(Scalar T)
The vapor pressure in of pure water at a given temperature.
Definition: h2o.hh:118
static constexpr Scalar criticalTemperature()
Returns the critical temperature of water.
Definition: h2o.hh:80
static Scalar gasThermalConductivity(const Scalar temperature, const Scalar pressure)
Thermal conductivity of steam (IAPWS) .
Definition: h2o.hh:778
static constexpr Scalar triplePressure()
Returns the pressure at water's triple point.
Definition: h2o.hh:104
static Scalar gasInternalEnergy(Scalar temperature, Scalar pressure)
Specific internal energy of steam and water vapor .
Definition: h2o.hh:344
static const Scalar gasHeatCapacity(Scalar temperature, Scalar pressure)
Specific isobaric heat capacity of water steam .
Definition: h2o.hh:239
static constexpr bool gasIsCompressible()
Returns true if the gas phase is assumed to be compressible.
Definition: h2o.hh:459
static const Scalar liquidHeatCapacityConstVolume(Scalar temperature, Scalar pressure)
Specific isochoric heat capacity of liquid water .
Definition: h2o.hh:411
static std::string name()
A human readable name for the water.
Definition: h2o.hh:62
static constexpr Scalar molarMass()
The molar mass in of water.
Definition: h2o.hh:68
static constexpr Scalar criticalPressure()
Returns the critical pressure of water.
Definition: h2o.hh:86
static constexpr Scalar criticalMolarVolume()
Returns the molar volume of water at the critical point.
Definition: h2o.hh:92
static constexpr bool liquidIsCompressible()
Returns true if the liquid phase is assumed to be compressible.
Definition: h2o.hh:465
static Scalar gasPressure(Scalar temperature, Scalar density)
The pressure of steam in at a given density and temperature.
Definition: h2o.hh:563
static constexpr Scalar tripleTemperature()
Returns the temperature at water's triple point.
Definition: h2o.hh:98
static Scalar gasMolarDensity(Scalar temperature, Scalar pressure)
The molar density of steam in at a given pressure and temperature.
Definition: h2o.hh:542
Interface for components that have a liquid state.
Definition: liquid.hh:28
Implements relations which are common for all regions of the IAPWS '97 formulation.
Definition: common.hh:45
static constexpr Scalar criticalMolarVolume
Critical molar volume of water .
Definition: common.hh:60
static constexpr Scalar Rs
Specific gas constant of water .
Definition: common.hh:51
static constexpr Scalar triplePressure
Triple pressure of water .
Definition: common.hh:72
static constexpr Scalar molarMass
The molar mass of water .
Definition: common.hh:48
static Scalar viscosity(Scalar temperature, Scalar rho)
The dynamic viscosity of pure water.
Definition: common.hh:88
static constexpr Scalar acentricFactor
The acentric factor of water .
Definition: common.hh:63
static constexpr Scalar criticalTemperature
Critical temperature of water .
Definition: common.hh:54
static constexpr Scalar tripleTemperature
Triple temperature of water .
Definition: common.hh:69
static constexpr Scalar criticalPressure
Critical pressure of water .
Definition: common.hh:57
static Scalar thermalConductivityIAPWS(const Scalar T, const Scalar rho)
Thermal conductivity water (IAPWS) .
Definition: common.hh:149
Implements the equations for region 1 of the IAPWS '97 formulation.
Definition: region1.hh:38
static Scalar dGamma_dPi(Scalar temperature, Scalar pressure)
The partial derivative of the Gibbs free energy to the normalized pressure for IAPWS region 1 (i....
Definition: region1.hh:170
static Scalar ddGamma_ddPi(Scalar temperature, Scalar pressure)
The second partial derivative of the Gibbs free energy to the normalized pressure for IAPWS region 1 ...
Definition: region1.hh:229
static constexpr Scalar dPi_dp(Scalar pressure)
Returns the derivative of the reduced pressure to the pressure for IAPWS region 1 in .
Definition: region1.hh:95
static constexpr Scalar tau(Scalar temperature)
Returns the reduced temperature for IAPWS region 1.
Definition: region1.hh:69
static void checkValidityRange(Scalar temperature, Scalar pressure, const std::string &propertyName="This property")
Returns true if IAPWS region 1 applies for a (temperature in , pressure in ) pair.
Definition: region1.hh:48
static Scalar dGamma_dTau(Scalar temperature, Scalar pressure)
The partial derivative of the Gibbs free energy to the normalized temperature for IAPWS region 1 (i....
Definition: region1.hh:142
static constexpr Scalar pi(Scalar pressure)
Returns the reduced pressure for IAPWS region 1.
Definition: region1.hh:86
static Scalar ddGamma_ddTau(Scalar temperature, Scalar pressure)
The second partial derivative of the Gibbs free energy to the normalized temperature for IAPWS region...
Definition: region1.hh:258
static Scalar ddGamma_dTaudPi(Scalar temperature, Scalar pressure)
The partial derivative of the Gibbs free energy to the normalized pressure and to the normalized temp...
Definition: region1.hh:199
Implements the equations for region 2 of the IAPWS '97 formulation.
Definition: region2.hh:40
static Scalar ddGamma_ddTau(Scalar temperature, Scalar pressure)
The second partial derivative of the Gibbs free energy to the normalized temperature for IAPWS region...
Definition: region2.hh:288
static Scalar dGamma_dTau(Scalar temperature, Scalar pressure)
The partial derivative of the Gibbs free energy to the normalized temperature for IAPWS region 2 (i....
Definition: region2.hh:153
static Scalar ddGamma_dTaudPi(Scalar temperature, Scalar pressure)
The partial derivative of the Gibbs free energy to the normalized pressure and to the normalized temp...
Definition: region2.hh:222
static Scalar ddGamma_ddPi(Scalar temperature, Scalar pressure)
The second partial derivative of the Gibbs free energy to the normalized pressure for IAPWS region 2 ...
Definition: region2.hh:255
static void checkValidityRange(Scalar temperature, Scalar pressure, const std::string &propertyName="This property")
Returns true if IAPWS region 2 applies for a (temperature, pressure) pair.
Definition: region2.hh:50
static constexpr Scalar pi(Scalar pressure)
Returns the reduced pressure (dimensionless) for IAPWS region 2.
Definition: region2.hh:88
static constexpr Scalar dPi_dp(Scalar pressure)
Returns the derivative of the reduced pressure to the pressure for IAPWS region 2 in .
Definition: region2.hh:97
static constexpr Scalar tau(Scalar temperature)
Returns the reduced temperature (dimensionless) for IAPWS region 2.
Definition: region2.hh:71
static Scalar dGamma_dPi(Scalar temperature, Scalar pressure)
The partial derivative of the Gibbs free energy to the normalized pressure for IAPWS region 2 (i....
Definition: region2.hh:190
Implements the equations for region 4 of the IAPWS '97 formulation.
Definition: region4.hh:41
static Scalar saturationPressure(Scalar temperature)
Returns the saturation pressure in of pure water at a given temperature.
Definition: region4.hh:52
static Scalar vaporTemperature(Scalar pressure)
Returns the saturation temperature in of pure water at a given pressure.
Definition: region4.hh:83
static constexpr Scalar pressure(Scalar temperature, Scalar rhoMolar)
The pressure of the gas in , depending on the molar density and temperature.
Definition: idealgas.hh:48
static constexpr Scalar density(Scalar avgMolarMass, Scalar temperature, Scalar pressure)
The density of the gas in , depending on pressure, temperature and average molar mass of the gas.
Definition: idealgas.hh:37
Exception thrown if a fixable numerical problem occurs.
Definition: exceptions.hh:27
Implements relations common for all regions of the IAPWS '97 formulation. See:
Base class for all components Components provide the thermodynamic relations for the liquid,...
Some exceptions thrown in DuMux
Root finding algorithms for scalar functions.
Interface for components that have a gas state.
Scalar findScalarRootBrent(Scalar a, Scalar b, const ResFunc &residual, const Scalar tol=1e-13, const int maxIter=200)
Brent's root finding algorithm for scalar functions.
Definition: findscalarroot.hh:99
Relations valid for an ideal gas.
Interface for components that have a liquid state.
Definition: air.hh:22
Definition: h2o.hh:901
Scalar viscosityNagel_(Scalar temperature)
Definition: h2o.hh:923
Scalar viscosityReid_(Scalar temperature)
Definition: h2o.hh:905
Definition: h2o.hh:901
Scalar h2oGasViscosityInMixture(Scalar temperature, Scalar pressure)
The dynamic viscosity of steam in a gas mixture.
Definition: h2o.hh:964
std::string temperature() noexcept
I/O name of temperature for equilibrium models.
Definition: name.hh:39
std::string pressure(int phaseIdx) noexcept
I/O name of pressure for multiphase systems.
Definition: name.hh:22
std::string density(int phaseIdx) noexcept
I/O name of density for multiphase systems.
Definition: name.hh:53
Implements the equations for region 1 of the IAPWS '97 formulation. See:
Implements the equations for region 2 of the IAPWS '97 formulation. See:
Implements the equations for region 4 of the IAPWS '97 formulation.
IsAqueous struct.
Definition: components/base.hh:34