A one-phase-flow, isothermal pore-network model using the fully implicit scheme. More...
#include <dumux/common/properties.hh>
#include <dumux/flux/porenetwork/advection.hh>
#include <dumux/porenetwork/properties.hh>
#include <dumux/porousmediumflow/immiscible/localresidual.hh>
#include <dumux/porousmediumflow/nonisothermal/model.hh>
#include <dumux/porousmediumflow/nonisothermal/iofields.hh>
#include <dumux/porousmediumflow/1p/model.hh>
#include <dumux/material/spatialparams/porenetwork/porenetwork1p.hh>
#include <dumux/material/fluidmatrixinteractions/porenetwork/throat/transmissibility1p.hh>
#include "iofields.hh"
#include "volumevariables.hh"
#include "fluxvariablescache.hh"
Go to the source code of this file.
A one-phase-flow, isothermal pore-network model using the fully implicit scheme.
A mass balance equation is formulated for each pore body i:
V_i \frac{\partial (\varrho_{i})}{\partial t} + \sum_j (\varrho Q)_{ij} = (V q)_i ~.
V_i is the pore body volume, and the advective mass flow (\varrho Q)_{ij} through throat ij can be based on the fluid phase density \varrho either of the upstream pore body i or j (upwinding) or on the respective averaged value. q_i is a mass sink or source term defined on pore body i.
Per default, the volume flow rate Q_{ij} follows a linear Hagen-Poiseuille-type law (Dumux::PoreNetworkModel::CreepingFlow) which is only valid for Re < 1:
Q_{ij} = g_{ij} (p_{i} - p_{j} + \Psi) ~.
g_{ij} is a suitable throat conductance value (see e.g. Dumux::PoreNetwork::TransmissibilityPatzekSilin) while p_i and p_j are averaged pore body pressures.
The (optional) influence of gravity is given by
\Psi = \varrho \mathbf{g} (\mathbf{x_i} - \mathbf{x_j}) ~,
where \mathbf{x_i} - \mathbf{x_j} is the distance vector between the centers of pore bodies i and j and \mathbf{g} is the gravitational acceleration.
Namespaces | |
namespace | Dumux |
namespace | Dumux::Properties |
namespace | Dumux::Properties::TTag |
Type tag for numeric models. | |