A single-phase, isothermal low-Reynolds k-epsilon model. More...
#include <dumux/common/properties.hh>
#include <dumux/freeflow/properties.hh>
#include <dumux/freeflow/rans/model.hh>
#include <dumux/freeflow/rans/twoeq/indices.hh>
#include <dumux/freeflow/turbulencemodel.hh>
#include "problem.hh"
#include "fluxvariables.hh"
#include "localresidual.hh"
#include "volumevariables.hh"
#include "iofields.hh"
Go to the source code of this file.
A single-phase, isothermal low-Reynolds k-epsilon model.
Single-phase Reynolds-Averaged Navier-Stokes flow For a detailed model description see freeflow/rans/model.hh.
The low-Reynolds k-epsilon models calculate the eddy viscosity with two additional PDEs, one for the turbulent kinetic energy (k) and for the dissipation ( \varepsilon ). The model uses the one proposed by Chien [13]. A good overview and additional models are given in Patel et al. [51].
The turbulent kinetic energy balance is identical with the one from the k-epsilon model, but the dissipation includes a dampening function ( D_\varepsilon ): \varepsilon = \tilde{\varepsilon} + D_\varepsilon :
\frac{\partial \left( \varrho k \right)}{\partial t} + \nabla \cdot \left( \textbf{v} \varhho k \right) - \nabla \cdot \left( \left( \mu + \frac{\mu_\text{t}}{\sigma_\text{k}} \right) \nabla k \right) - 2 \mu_\text{t} \textbf{S} \cdot \textbf{S} + \varrho \tilde{\varepsilon} + D_\varepsilon \varrho = 0
.
The dissipation balance is changed by introducing additional functions ( E_\text{k}, f_1 , and f_2 ) to account for a dampening towards the wall:
\frac{\partial \left( \varrho \tilde{\varepsilon} \right)}{\partial t} + \nabla \cdot \left( \textbf{v} \varrho \tilde{\varepsilon} \right) - \nabla \cdot \left( \left( \mu + \frac{\mu_\text{t}}{\sigma_{\varepsilon}} \right) \nabla \tilde{\varepsilon} \right) - C_{1\tilde{\varepsilon}} f_1 \frac{\tilde{\varepsilon}}{k} 2 \mu_\text{t} \textbf{S} \cdot \textbf{S} + C_{2\tilde{\varepsilon}} \varrho f_2 \frac{\tilde{\varepsilon}^2}{k} - E_\text{k} \varrho = 0
.
The kinematic eddy viscosity \nu_\text{t} is dampened by f_\mu :
\mu_\text{t} = \varrho C_\mu f_\mu \frac{k^2}{\tilde{\varepsilon}}
.
The auxiliary and dampening functions are defined as:
D_\varepsilon = 2 \nu \frac{k}{y^2}
E_\text{k} = -2 \nu \frac{\tilde{\varepsilon}}{y^2} \exp \left( -0.5 y^+ \right)
f_1 = 1
f_2 = 1 - 0.22 \exp \left( - \left( \frac{\mathit{Re}_\text{t}}{6} \right)^2 \right)
f_\mu = 1 - \exp \left( -0.0115 y^+ \right)
\mathit{Re}_\text{t} = \frac{k^2}{\nu \tilde{\varepsilon}}
.
Finally, the model is closed with the following constants:
\sigma_\text{k} = 1.00
\sigma_\varepsilon =1.30
C_{1\tilde{\varepsilon}} = 1.35
C_{2\tilde{\varepsilon}} = 1.80
C_\mu = 0.09
Namespaces | |
namespace | Dumux |
namespace | Dumux::Properties |
namespace | Dumux::Properties::TTag |
Type tag for numeric models. | |