3.4
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
Bibliography
[1]

I. Aavatsmark, G. T. Eigestad, B. Heimsund, B. Mallison, J. Nordbotten, E. Øian, and others. A new finite-volume approach to efficient discretization on challenging grids. SPE Journal, 15(03):658–669, 2010.

[2]

M. Acosta, C. Merten, G. Eigenberger, H. Class, R. Helmig, B. Thoben, and H. Müller-Steinhagen. Modeling non-isothermal two-phase multicomponent flow in the cathode of PEM fuel cells. Journal of Power Sources, page in print, 2006.

[3]

J. J. Adams and S. Bachu. Equations of state for basin geofluids: algorithm review and intercomparison for brines. Geofluids, 2(4):257–271, 2002.

[4]

G. A. Adebiyi. Formulations for the thermodynamic properties of pure substances. In ASME 2003 International Mechanical Engineering Congress and Exposition, pages 183–188. American Society of Mechanical Engineers, 2003.

[5]

D. Ambrose and J. Walton. Vapour pressures up to their critical temperatures of normal alkanes and 1-alkanols. Pure and Applied Chemistry, 61(8):1395–1403, 1989.

[6]

ANSYS, Inc. ANSYS FLUENT 12.0 - User's Guide. ANSYS, Inc., 12.0 edition, 2009.

[7]

B. S. Baldwin and H. Lomax. Thin Layer Approximation and Algebraic Model for Seperated Turbulent Flows. ACM Trans Math Software, 78–257:1–9, 1978.

[8]

M. Batzle and Z. Wang. Seismic properties of pore fluids. Geophysics, 57(11):1396–1408, 1992.

[9]

Jacob Bear. Dynamics of Fluids in Porous Media. Dover Civil and Mechanical Engineering Series. Dover, 1972.

[10]

Michele Benzi, Gene H. Golub, and Jörg Liesen. Numerical solution of saddle point problems. Acta Numerica, 14:1–137, 2005.

[11]

P. Binning and M. A. Celia. Practical implementation of the fractional flow approach to multi-phase flow simulation. Advances in water resources, 22:461–478, 1999.

[12]

Philip C. Carman. Fluid flow through granular beds. Transactions, Institution of Chemical Engineers, 15:150–166, 1937. reprinted in Chemical Engineering Research and Design, 75:S32–S48, 1997.

[13]

Kuei-Yuan Chien. Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model. AIAA Journal, 20(1):33–38, 1982.

[14]

H. Class and R. Helmig. Numerical Simulation of Nonisothermal Multiphase Multicomponent Processes in Porous Media – 2. Applications for the Injection of Steam and Air. Advances in Water Resources, 25:551–564, 2002.

[15]

Holger Class. Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in NAPL-kontaminierten porösen Medien. PhD thesis, Technische Universität Braunschweig, 2001. doi 10.18419/opus-223.

[16]

J. R. Cooper and R. B. Dooley. Release of the IAPWS formulation 2008 for the viscosity of ordinary water substance, 2008.

[17]

T. E. Daubert and R. P. Danner. Physical and Thermodynamic Properties of Pure Chemicals: Design institute for physical property data, American institute of chemical engineers. vp. Hemisphere Publishing Corporation, 1989.

[18]

M. Delshad and G. A. Pope. Comparison of the three-phase oil relative permeability models. Transport in Porous Media, 4(1):59–83, 1989.

[19]

Z. Duan and R. Sun. An improved model calculating CO 2 solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical geology, 193(3):257–271, 2003.

[20]

A. Ebigbo. Thermal effects of carbon dioxide sequestration in the subsurface. Master's thesis, Institut für Wasserbau, Universität Stuttgart, 2005.

[21]

R. T. Ferrell and D. M. Himmelblau. Diffusion coefficients of nitrogen and oxygen in water. Journal of chemical and engineering data, 12(1):111–115, 1967.

[22]

Stefan Finsterle. Inverse Modellierung zur Bestimmung hydrogeologischer Parameter eines Zweiphasensystems. VAW, 1993.

[23]

Flekkøy, EG and Oxaal, U and Feder, J and Jøssang, T. Hydrodynamic dispersion at stagnation points: Simulations and experiments. Physical Review E, 52(5):4952, 1995.

[24]

IAPWS (The International Association for the Properties of Water and Steam). Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. http://www.iapws.org/IF97-Rev.pdf, 1997.

[25]

J. Gmehling, U. Onken, and H. W. Schulte. Vapor-liquid equilibriums for the binary systems diethyl ether-halothane (1, 1, 1-trifluoro-2-bromo-2-chloroethane), halothane-methanol, and diethyl ether-methanol. Journal of Chemical and Engineering Data, 25(1):29–32, 1980.

[26]

Gang Han and Maurice B Dusseault. Description of fluid flow around a wellbore with stress-dependent porosity and permeability. Journal of Petroleum science and engineering, 40(1-2):1–16, 2003.

[27]

O. T. Hanna, O. C. Sandell, and P. R. Mazet. Heat and Mass Transfer in Turbulent Flow Under Conditions of Drag Reduction. AIChE Journal, 27(4):693–697, 1981.

[28]

R. Helmig. Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems. Springer, 1 edition, 1997.

[29]

Nguyenho Ho, Sarah D. Olson, and Homer F. Walker. Accelerating the uzawa algorithm. SIAM Journal on Scientific Computing, 39(5):S461–S476, 2017.

[30]

B. R. Hollis. Real-Gas Flow Properties for NASA Langley Research Center Aerothermodynamic Facilities Complex Wind Tunnels. 1996.

[31]

IAPWS. Release on the IAPWS Formulation 2011 for the Thermal Conductivity of Ordinary Water Substance. Technical Report IAPWS R15-11, The International Association for the Properties of Water and Steam, Plzeň, Czech Republic, 2011.

[32]

J. Gudbjerg and O. Trötschler and A. Färber and T.O. Sonnenborg and K.H. Jensen. On spurious water flow during numerical simulation of steam injection into water-saturated soil. Journal of Contaminant Hydrology, 75(3–4):297 – 318, 2004.

[33]

V. Joekar-Niasar, S. M. Hassanizadeh, and A. Leijnse. Insights into the relationships among capillary pressure, saturation, interfacial area and relative permeability using pore-network modeling. Transport in Porous Media, 74(2):201–219, 2008.

[34]

O. Johansen. Thermal conductivity of soils. Technical report, DTIC Document, 1977.

[35]

W. M. Kays, M. E. Crawford, and B. Weigand. Convective heat and mass transfer. McGraw-Hill Higher Education, 4 edition, 2005.

[36]

J. E. Killough and C. A. Kossack. Fifth Comparative Solution Project: Evaluation of Miscible Flood Simulators. Society of Petroleum Engineers, SPE 16000, 1987.

[37]

A Lashanizadegan, Sh Ayatollahi, and M Homayoni. Simultaneous heat and fluid flow in porous media: case study: steam injection for tertiary oil recovery. Chemical Engineering Communications, 195(5):521–535, 2008.

[38]

B.E. Launder and B.I. Sharma. Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1(2):131 – 137, 1974.

[39]

E. W. Lemmon and R. T. Jacobsen. Viscosity and Thermal Conductivity Equations for Nitrogen, Oxygen, Argon, and Air. International Journal of Thermophysics, 25(1):21–69, 2004.

[40]

W. J. Lyman, W. F. Reehl, and D. H. Rosenblatt. Handbook of chemical property estimation methods: environmental behavior of organic compounds. 1990.

[41]

E. E. Michaelides. Thermodynamic properties of geothermal fluids. Trans.-Geotherm. Resour. Counc.;(United States), 5(CONF-811015-), 1981.

[42]

R. J. Millington and J. P. Quirk. Permeability of porous solids. Trans. Faraday Soc., 57:1200–1207, 1961.

[43]

D. A. Nield and A. Bejan. Convection with Change of Phase. Convection in Porous Media, pages 403–452, 2006.

[44]

Thermophysical Properties of Fluid Systems: http://webbook.nist.gov/chemistry/fluid/.

[45]

K. P. Nuske. Determination of interfacial area-capillary pressure-saturation relationships for a single fracture. Master's thesis, Universität Stuttgart, 2009.

[46]

Philipp Nuske. Beyond local equilibrium : relaxing local equilibrium assumptions in multiphase flow in porous media. PhD thesis, Universität Stuttgart, Holzgartenstr. 16, 70174 Stuttgart, 2014.

[47]

C. J. Ochs, F. Sittner, R. Ugas-Carrión, M. Yekehtaz, and W. Ensinger. Structural and electrochemical characterization of zirconium and silicon based sol-gel coatings for corrosion protection. Current Topics in Electrochemistry, 13:59–65, 2008.

[48]

Herbert Oertel. Prandtl - Führer durch die Strömungslehre: Grundlagen und Phänomene. Springer Vieweg, Wiesbaden, 13 edition, 2012.

[49]

L. I. Oliveira and A. H. Demond. Estimation of primary drainage three-phase relative permeability for organic liquid transport in the vadose zone. Journal of Contaminant Hydrology, 66(3):261–285, 2003.

[50]

C. Palliser and R. McKibbin. A model for deep geothermal brines, III: Thermodynamic properties–enthalpy and viscosity. Transport in Porous Media, 33(1-2):155–171, 1998.

[51]

V. C. Patel, W. Rodi, and G. Scheuerer. Turbulence models for near-wall and low Reynolds number flows - A review. AIAA Journal, 23(9):1308–1319, 1985.

[52]

Edzer J. Pebesma and Cees G. Wesseling. Gstat: a program for geostatistical modelling, prediction and simulation. Computers & Geosciences, 24(1):17–31, 1998.

[53]

D.-Y. Peng and D. B. Robinson. A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 15(1):59–64, 1976.

[54]

B. E. Poling, J. M. Prausnitz, and J. P. O'Connell. The properties of gases and liquids, volume 5. McGraw-Hill New York, 2001.

[55]

R. Prydz. An Improved Oxygen Vapor Pressure Representation. Metrologia, 8(1):1, 1972.

[56]

R. C. Reid, J.M. Prausnitz, and B. E. Poling. The Properties of Gases and Liquids. McGraw-Hill Inc., 1987.

[57]

R. Sander. Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry, 1999.

[58]

W. H. Somerton, J. A. Keese, S. L. Chu, and others. Thermal behavior of unconsolidated oil sands. Society of Petroleum Engineers Journal, 14(05):513–521, 1974.

[59]

P. R. Spalart and S. R. Allmaras. A one-equation turbulence model for aerodynamic flows. In Aerospace Sciences Meetings, pages –. American Institute of Aeronautics and Astronautics, 1992.

[60]

R. Span and W. Wagner. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. Journal of physical and chemical reference data, 25(6):1509–1596, 1996.

[61]

R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner, and A. Yokozeki. A reference equation of state for the thermodynamic properties of nitrogen for temperatures from 63.151 to 1000 K and pressures to 2200 MPa. Journal of Physical and Chemical Reference Data, 29(6):1361–1433, 2000.

[62]

N. Spycher and K. Pruess. CO 2-H 2 O mixtures in the geological sequestration of CO 2. II. Partitioning in chloride brines at 12–100 C and up to 600 bar. Geochimica et Cosmochimica Acta, 69(13):3309–3320, 2005.

[63]

N. Spycher, K. Pruess, and J. Ennis-King. CO_2-H_2O mixtures in the geological sequestration of CO_2. I. Assessment and calculation of mutual solubilities from 12 to 100 C and up to 600 bar. Geochimica et cosmochimica acta, 67(16):3015–3031, 2003.

[64]

Josef Stoer and Roland Bulirsch. Numerische Mathematik 1. Springer, Berlin, 9 edition, 2005.

[65]

Ross Taylor and Rajamani Krishna. Multicomponent mass transfer, volume 2. John Wiley & Sons, 1993.

[66]

G. Tchobanoglous and E. D. Schroeder. Water Quality: Characteristics. Modeling, Modification: Addison-Wesley, 1985.

[67]

E. R. van Driest. On Turbulent Flow Near a Wall. AIAA Journal, 23(11):1007–1011, 1956.

[68]

Natan B Vargaftik. Tables on the thermophysical properties of liquids and gases in normal and dissociated states. 1975.

[69]

Venturoli, Maddalena and Boek, Edo S. Two-dimensional lattice-Boltzmann simulations of single phase flow in a pseudo two-dimensional micromodel. Physica A: Statistical Mechanics and its Applications, 362(1):23–29,

[70]

Henk Versteeg and Weeratunge Malalasekra. An Introduction to Computational Fluid Dynamics. Pearson Education, Harlow, 2 edition, 2009.

[71]

W. R. Walker, J. D. Sabey, and D. R. Hampton. Studies of heat transfer and water migration in soils. Final report. Technical report, Colorado State Univ., Fort Collins (USA). Solar Energy Applications Lab., 1981.

[72]

K. Watanabe and R. B. Dooley. Guideline on the Henry's Constant and Vapor-Liquid Distribution Constant for Gases in H2O and D2O at High Temperatures. International Association for the Properties of Water and Steam, 2004.

[73]

David C. Wilcox. Formulation of the k-ω Turbulence Model Revisited. AIAA Journal, 46(11):2823–2838, 2008.

[74]

P. A. Witherspoon and D. N. Saraf. Diffusion of Methane, Ethane, Propane, and n-Butane in Water from 25 to 43°. The Journal of Physical Chemistry, 69(11):3752–3755, 1965.

[75]

Markus Wolff, Yufei Cao, Bernd Flemisch, Rainer Helmig, and Barbara Wohlmuth. Multi-point flux approximation L-method in 3D: numerical convergence and application to two-phase flow through porous media, pages 39–80. Simulation of Flow in Porous Media: Applications in Energy and Environment. De Gruyter, 2013.

[76]

Markus Wolff. Multi-scale modeling of two-phase flow in porous media including capillary pressure effects. PhD thesis, Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart, 2013.

[77]

B. Xu, K. Nagashima, J. M. DeSimone, and C. S. Johnson. Diffusion of water in liquid and supercritical carbon dioxide: an NMR study. The Journal of Physical Chemistry A, 107(1):1–3, 2003.