3.3.0
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
flux/box/fickslaw.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*****************************************************************************
4 * See the file COPYING for full copying permissions. *
5 * *
6 * This program is free software: you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation, either version 3 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 *****************************************************************************/
25#ifndef DUMUX_DISCRETIZATION_BOX_FICKS_LAW_HH
26#define DUMUX_DISCRETIZATION_BOX_FICKS_LAW_HH
27
28#include <dune/common/fvector.hh>
29#include <dune/common/fmatrix.hh>
30
31#include <dumux/common/math.hh>
35
38
39namespace Dumux {
40
41// forward declaration
42template<class TypeTag, DiscretizationMethod discMethod, ReferenceSystemFormulation referenceSystem>
44
49template <class TypeTag, ReferenceSystemFormulation referenceSystem>
50class FicksLawImplementation<TypeTag, DiscretizationMethod::box, referenceSystem>
51{
57 using FVElementGeometry = typename GridGeometry::LocalView;
58 using SubControlVolume = typename GridGeometry::SubControlVolume;
59 using SubControlVolumeFace = typename GridGeometry::SubControlVolumeFace;
60 using Extrusion = Extrusion_t<GridGeometry>;
61 using ElementVolumeVariables = typename GetPropType<TypeTag, Properties::GridVolumeVariables>::LocalView;
62 using ElementFluxVariablesCache = typename GetPropType<TypeTag, Properties::GridFluxVariablesCache>::LocalView;
66 using Element = typename GridView::template Codim<0>::Entity;
68
69 enum { dim = GridView::dimension} ;
70 enum { dimWorld = GridView::dimensionworld} ;
71 enum
72 {
73 numPhases = ModelTraits::numFluidPhases(),
74 numComponents = ModelTraits::numFluidComponents()
75 };
76 using DimWorldMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
77 using ComponentFluxVector = Dune::FieldVector<Scalar, numComponents>;
78
79public:
81
82 //return the reference system
84 { return referenceSystem; }
85
92 static ComponentFluxVector flux(const Problem& problem,
93 const Element& element,
94 const FVElementGeometry& fvGeometry,
95 const ElementVolumeVariables& elemVolVars,
96 const SubControlVolumeFace& scvf,
97 const int phaseIdx,
98 const ElementFluxVariablesCache& elemFluxVarsCache)
99 {
100 // get inside and outside diffusion tensors and calculate the harmonic mean
101 const auto& insideVolVars = elemVolVars[scvf.insideScvIdx()];
102 const auto& outsideVolVars = elemVolVars[scvf.outsideScvIdx()];
103
104 // evaluate gradX at integration point and interpolate density
105 const auto& fluxVarsCache = elemFluxVarsCache[scvf];
106 const auto& shapeValues = fluxVarsCache.shapeValues();
107
108 // density interpolation
109 Scalar rho(0.0);
110 for (auto&& scv : scvs(fvGeometry))
111 rho += massOrMolarDensity(elemVolVars[scv], referenceSystem, phaseIdx)*shapeValues[scv.indexInElement()][0];
112
113 ComponentFluxVector componentFlux(0.0);
114 for (int compIdx = 0; compIdx < numComponents; compIdx++)
115 {
116 if constexpr (!FluidSystem::isTracerFluidSystem())
117 if (compIdx == FluidSystem::getMainComponent(phaseIdx))
118 continue;
119
120 const auto D = averageDiffusionCoefficient_(phaseIdx, compIdx, insideVolVars, outsideVolVars, problem, scvf);
121
122 // compute the diffusive flux
123 const auto massOrMoleFrac = [&](const SubControlVolume& scv){ return massOrMoleFraction(elemVolVars[scv], referenceSystem, phaseIdx, compIdx); };
124 componentFlux[compIdx] = discreteFlux_(fvGeometry, scvf, fluxVarsCache, massOrMoleFrac, D, rho);
125
126 // if the main component is balanced subtract the same flux from there (conservation)
127 if constexpr (!FluidSystem::isTracerFluidSystem())
128 if (BalanceEqOpts::mainComponentIsBalanced(phaseIdx))
129 componentFlux[FluidSystem::getMainComponent(phaseIdx)] -= componentFlux[compIdx];
130 }
131 return componentFlux;
132 }
133
134 // compute transmissibilities ti for analytical jacobians
135 static std::array<std::vector<Scalar>, numComponents>
136 calculateTransmissibilities(const Problem& problem,
137 const Element& element,
138 const FVElementGeometry& fvGeometry,
139 const ElementVolumeVariables& elemVolVars,
140 const SubControlVolumeFace& scvf,
141 const FluxVarCache& fluxVarCache,
142 const int phaseIdx)
143 {
144 Scalar rho(0.0);
145 const auto& shapeValues = fluxVarCache.shapeValues();
146 for (auto&& scv : scvs(fvGeometry))
147 rho += massOrMolarDensity(elemVolVars[scv], referenceSystem, phaseIdx)*shapeValues[scv.indexInElement()][0];
148
149 const auto& insideVolVars = elemVolVars[scvf.insideScvIdx()];
150 const auto& outsideVolVars = elemVolVars[scvf.outsideScvIdx()];
151
152 std::array<std::vector<Scalar>, numComponents> ti;
153 for (int compIdx = 0; compIdx < numComponents; compIdx++)
154 {
155 if constexpr (!FluidSystem::isTracerFluidSystem())
156 if (compIdx == FluidSystem::getMainComponent(phaseIdx))
157 continue;
158
159 const auto D = averageDiffusionCoefficient_(phaseIdx, compIdx, insideVolVars, outsideVolVars, problem, scvf);
160
161 ti[compIdx].resize(fvGeometry.numScv());
162 for (auto&& scv : scvs(fvGeometry))
163 ti[compIdx][scv.indexInElement()] = -rho*vtmv(scvf.unitOuterNormal(), D, fluxVarCache.gradN(scv.indexInElement()))*Extrusion::area(scvf);
164 }
165
166 return ti;
167 }
168
169private:
170 static Scalar averageDiffusionCoefficient_(const int phaseIdx, const int compIdx,
171 const VolumeVariables& insideVV, const VolumeVariables& outsideVV,
172 const Problem& problem,
173 const SubControlVolumeFace& scvf)
174 {
175 // effective diffusion tensors
176 auto [insideD, outsideD] = diffusionCoefficientsAtInterface_(phaseIdx, compIdx, insideVV, outsideVV);
177
178 // scale by extrusion factor
179 insideD *= insideVV.extrusionFactor();
180 outsideD *= outsideVV.extrusionFactor();
181
182 // the resulting averaged diffusion tensor
183 return problem.spatialParams().harmonicMean(insideD, outsideD, scvf.unitOuterNormal());
184 }
185
186 static std::pair<Scalar, Scalar>
187 diffusionCoefficientsAtInterface_([[maybe_unused]] const int phaseIdx, const int compIdx,
188 const VolumeVariables& insideVV, const VolumeVariables& outsideVV)
189 {
190 if constexpr (!FluidSystem::isTracerFluidSystem())
191 {
192 const auto mainCompIdx = FluidSystem::getMainComponent(phaseIdx);
193 const auto insideD = insideVV.effectiveDiffusionCoefficient(phaseIdx, mainCompIdx, compIdx);
194 const auto outsideD = outsideVV.effectiveDiffusionCoefficient(phaseIdx, mainCompIdx, compIdx);
195 return { std::move(insideD), std::move(outsideD) };
196 }
197 else
198 {
199 const auto insideD = insideVV.effectiveDiffusionCoefficient(0, 0, compIdx);
200 const auto outsideD = outsideVV.effectiveDiffusionCoefficient(0, 0, compIdx);
201 return { std::move(insideD), std::move(outsideD) };
202 }
203 }
204
205 template<class EvaluateVariable, class Tensor>
206 static Scalar discreteFlux_(const FVElementGeometry& fvGeometry,
207 const SubControlVolumeFace& scvf,
208 const FluxVarCache& fluxVarsCache,
209 const EvaluateVariable& massOrMoleFraction,
210 const Tensor& D, const Scalar preFactor)
211 {
212 Dune::FieldVector<Scalar, dimWorld> gradX(0.0);
213 for (auto&& scv : scvs(fvGeometry))
214 gradX.axpy(massOrMoleFraction(scv), fluxVarsCache.gradN(scv.indexInElement()));
215 return -1.0*preFactor*vtmv(scvf.unitOuterNormal(), D, gradX)*Extrusion::area(scvf);
216 }
217};
218
219} // end namespace Dumux
220
221#endif
Container storing the diffusion coefficients required by Fick's law. Uses the minimal possible contai...
The reference frameworks and formulations available for splitting total fluxes into a advective and d...
Define some often used mathematical functions.
The available discretization methods in Dumux.
Helper classes to compute the integration elements.
DiscretizationMethod
The available discretization methods in Dumux.
Definition: method.hh:37
VolumeVariables::PrimaryVariables::value_type massOrMoleFraction(const VolumeVariables &volVars, ReferenceSystemFormulation referenceSys, const int phaseIdx, const int compIdx)
returns the mass or mole fraction to be used in Fick's law based on the reference system
Definition: referencesystemformulation.hh:66
VolumeVariables::PrimaryVariables::value_type massOrMolarDensity(const VolumeVariables &volVars, ReferenceSystemFormulation referenceSys, const int phaseIdx)
evaluates the density to be used in Fick's law based on the reference system
Definition: referencesystemformulation.hh:55
ReferenceSystemFormulation
The formulations available for Fick's law related to the reference system.
Definition: referencesystemformulation.hh:45
Dune::DenseMatrix< MAT >::value_type vtmv(const Dune::DenseVector< V1 > &v1, const Dune::DenseMatrix< MAT > &M, const Dune::DenseVector< V2 > &v2)
Evaluates the scalar product of a vector v2, projected by a matrix M, with a vector v1.
Definition: math.hh:849
Definition: adapt.hh:29
typename Extrusion< T >::type Extrusion_t
Convenience alias for obtaining the extrusion type.
Definition: extrusion.hh:177
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property (equivalent to old macro GET_PROP_TYPE(....
Definition: propertysystem.hh:149
forward declaration of the method-specific implemetation
Definition: flux/box/fickslaw.hh:43
static constexpr ReferenceSystemFormulation referenceSystemFormulation()
Definition: flux/box/fickslaw.hh:83
static ComponentFluxVector flux(const Problem &problem, const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const SubControlVolumeFace &scvf, const int phaseIdx, const ElementFluxVariablesCache &elemFluxVarsCache)
Returns the diffusive fluxes of all components within a fluid phase across the given sub-control volu...
Definition: flux/box/fickslaw.hh:92
static std::array< std::vector< Scalar >, numComponents > calculateTransmissibilities(const Problem &problem, const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const SubControlVolumeFace &scvf, const FluxVarCache &fluxVarCache, const int phaseIdx)
Definition: flux/box/fickslaw.hh:136
Container storing the diffusion coefficients required by Fick's law. Uses the minimal possible contai...
Definition: fickiandiffusioncoefficients.hh:44
Declares all properties used in Dumux.