24#ifndef DUMUX_FV3DTRANSPORT2P2C_ADAPTIVE_HH
25#define DUMUX_FV3DTRANSPORT2P2C_ADAPTIVE_HH
27#include <dune/grid/common/gridenums.hh>
28#include <dune/common/float_cmp.hh>
54template<
class TypeTag>
75 dim = GridView::dimension, dimWorld = GridView::dimensionworld,
76 NumPhases = getPropValue<TypeTag, Properties::NumPhases>()
80 pw = Indices::pressureW,
81 pn = Indices::pressureN,
82 Sw = Indices::saturationW,
83 Sn = Indices::saturationN
87 wPhaseIdx = Indices::wPhaseIdx, nPhaseIdx = Indices::nPhaseIdx,
88 wCompIdx = Indices::wPhaseIdx, nCompIdx = Indices::nPhaseIdx,
89 contiWEqIdx=Indices::contiWEqIdx, contiNEqIdx=Indices::contiNEqIdx
92 using Element =
typename GridView::Traits::template Codim<0>::Entity;
93 using Grid =
typename GridView::Grid;
94 using Intersection =
typename GridView::Intersection;
95 using IntersectionIterator =
typename GridView::IntersectionIterator;
97 using TransmissivityMatrix = Dune::FieldVector<Scalar,dim+1>;
98 using GlobalPosition = Dune::FieldVector<Scalar, dimWorld>;
99 using DimMatrix = Dune::FieldMatrix<Scalar, dim, dim>;
100 using PhaseVector = Dune::FieldVector<Scalar, NumPhases>;
108 virtual void update(
const Scalar t, Scalar& dt, TransportSolutionType& updateVec,
111 void getMpfaFlux(Dune::FieldVector<Scalar, 2>&, Dune::FieldVector<Scalar, 2>&,
112 const IntersectionIterator&, CellData&);
126 enableMPFA = getParam<bool>(
"GridAdapt.EnableMultiPointFluxApproximation");
139 static const int pressureType = getPropValue<TypeTag, Properties::PressureFormulation>();
162template<
class TypeTag>
164 TransportSolutionType& updateVec,
bool impet)
166 this->impet_ = impet;
170 this->averagedFaces_ = 0;
173 int size_ = problem_.gridView().size(0);
174 updateVec.resize(getPropValue<TypeTag, Properties::NumComponents>());
175 updateVec[wCompIdx].resize(size_);
176 updateVec[nCompIdx].resize(size_);
177 updateVec[wCompIdx] = 0;
178 updateVec[nCompIdx] = 0;
180 if(this->totalConcentration_.size() != size_)
182 this->totalConcentration_[wCompIdx].resize(size_);
183 this->totalConcentration_[nCompIdx].resize(size_);
186 for (
int i = 0; i< problem().gridView().size(0); i++)
188 CellData& cellDataI = problem().variables().cellData(i);
189 for(
int compIdx = 0; compIdx < getPropValue<TypeTag, Properties::NumComponents>(); compIdx++)
191 this->totalConcentration_[compIdx][i]
192 = cellDataI.totalConcentration(compIdx);
196 if (this->localTimeStepping_)
198 if (this->timeStepData_.size() != size_)
199 this->timeStepData_.resize(size_);
203 int restrictingCell = -1;
205 Dune::FieldVector<Scalar, 2> entries(0.), timestepFlux(0.);
207 for (
const auto& element : elements(problem().gridView()))
210 int globalIdxI = problem().variables().index(element);
211 CellData& cellDataI = problem().variables().cellData(globalIdxI);
213 if(!impet && cellDataI.subdomain()!=2)
217 double sumfactorin = 0;
218 double sumfactorout = 0;
221 const auto isEndIt = problem().gridView().iend(element);
222 for (
auto isIt = problem().gridView().ibegin(element); isIt != isEndIt; ++isIt)
224 const auto& intersection = *isIt;
227 if (intersection.neighbor())
229 if (enableMPFA && intersection.outside().level() != element.level())
230 getMpfaFlux(entries, timestepFlux, isIt, cellDataI);
232 this->getFlux(entries, timestepFlux, intersection, cellDataI);
236 if (intersection.boundary())
238 this->getFluxOnBoundary(entries, timestepFlux, intersection, cellDataI);
241 if (this->localTimeStepping_)
243 int indexInInside = intersection.indexInInside();
245 if (localData.
faceTargetDt[indexInInside] < this->accumulatedDt_ + this->dtThreshold_)
247 localData.
faceFluxes[indexInInside] = entries;
253 updateVec[wCompIdx][globalIdxI] += entries[wCompIdx];
254 updateVec[nCompIdx][globalIdxI] += entries[nCompIdx];
257 sumfactorin += timestepFlux[0];
258 sumfactorout += timestepFlux[1];
262 if (this->localTimeStepping_)
265 for (
int i=0; i < 2*dim; i++)
267 updateVec[wCompIdx][globalIdxI] += localData.
faceFluxes[i][wCompIdx];
268 updateVec[nCompIdx][globalIdxI] += localData.
faceFluxes[i][nCompIdx];
273 PrimaryVariables q(NAN);
274 problem().source(q, element);
275 updateVec[wCompIdx][globalIdxI] += q[contiWEqIdx];
276 updateVec[nCompIdx][globalIdxI] += q[contiNEqIdx];
280 sumfactorin = max(sumfactorin,sumfactorout)
281 / problem().spatialParams().porosity(element);
284 if (this->localTimeStepping_)
286 this->timeStepData_[globalIdxI].dt = 1./sumfactorin;
287 if ( 1./sumfactorin < dt)
290 restrictingCell= globalIdxI;
295 if ( 1./sumfactorin < dt)
298 restrictingCell= globalIdxI;
306 using ElementMapper =
typename SolutionTypes::ElementMapper;
308 for (
int i = 0; i < updateVec.size(); i++)
310 DataHandle dataHandle(problem().variables().elementMapper(), updateVec[i]);
311 problem_.gridView().template communicate<DataHandle>(dataHandle,
312 Dune::InteriorBorder_All_Interface,
313 Dune::ForwardCommunication);
315 dt = problem().gridView().comm().min(dt);
320 Dune::dinfo <<
"Timestep restricted by CellIdx " << restrictingCell <<
" leads to dt = "
321 <<dt * getParam<Scalar>(
"Impet.CFLFactor")<< std::endl;
322 if(this->averagedFaces_ != 0)
323 Dune::dwarn <<
" Averageing done for " << this->averagedFaces_ <<
" faces. "<< std::endl;
345template<
class TypeTag>
347 Dune::FieldVector<Scalar, 2>& timestepFlux,
348 const IntersectionIterator& isIt, CellData& cellDataI)
350 const auto& intersection = *isIt;
355 auto elementI = intersection.inside();
356 int globalIdxI = problem().variables().index(elementI);
359 const GlobalPosition globalPos = elementI.geometry().center();
360 const GlobalPosition& gravity_ = problem().gravity();
362 Scalar volume = elementI.geometry().volume();
365 Scalar pressI = problem().pressureModel().pressure(globalIdxI);
366 Scalar pcI = cellDataI.capillaryPressure();
371 const auto fluidMatrixInteraction = Deprecated::makePcKrSw(Scalar{}, problem().spatialParams(), elementI);
373 PhaseVector SmobI(0.);
375 SmobI[wPhaseIdx] = max((cellDataI.saturation(wPhaseIdx)
376 - fluidMatrixInteraction.pcSwCurve().effToAbsParams().swr())
378 SmobI[nPhaseIdx] = max((cellDataI.saturation(nPhaseIdx)
379 - fluidMatrixInteraction.pcSwCurve().effToAbsParams().snr())
382 Scalar densityWI (0.), densityNWI(0.);
383 densityWI= cellDataI.density(wPhaseIdx);
384 densityNWI = cellDataI.density(nPhaseIdx);
386 PhaseVector potential(0.);
389 auto neighbor = intersection.outside();
390 int globalIdxJ = problem().variables().index(neighbor);
391 CellData& cellDataJ = problem().variables().cellData(globalIdxJ);
394 const GlobalPosition& globalPosNeighbor = neighbor.geometry().center();
397 GlobalPosition distVec = globalPosNeighbor - globalPos;
399 Scalar dist = distVec.two_norm();
401 GlobalPosition unitDistVec(distVec);
405 Scalar densityWJ (0.), densityNWJ(0.);
406 densityWJ = cellDataJ.density(wPhaseIdx);
407 densityNWJ = cellDataJ.density(nPhaseIdx);
410 double densityW_mean = (densityWI + densityWJ) * 0.5;
411 double densityNW_mean = (densityNWI + densityNWJ) * 0.5;
413 double pressJ = problem().pressureModel().pressure(globalIdxJ);
414 Scalar pcJ = cellDataJ.capillaryPressure();
418 GlobalPosition globalPos3(0.);
420 GlobalPosition globalPos4(0.);
422 TransmissivityMatrix T(0.);
423 TransmissivityMatrix additionalT(0.);
425 GlobalPosition globalPosAdditional3(0.);
426 int globalIdxAdditional3=-1;
427 GlobalPosition globalPosAdditional4(0.);
428 int globalIdxAdditional4=-1;
431 = problem().variables().getMpfaData3D(intersection, T, globalPos3, globalIdx3, globalPos4, globalIdx4 );
432 if (halfedgesStored == 0)
433 halfedgesStored = problem().pressureModel().computeTransmissibilities(isIt,T,
434 globalPos3, globalIdx3, globalPos4, globalIdx4 );
437 Scalar press3 = problem().pressureModel().pressure(globalIdx3);
438 CellData& cellData3 = problem().variables().cellData(globalIdx3);
439 Scalar pc3 = cellData3.capillaryPressure();
440 Scalar press4 = problem().pressureModel().pressure(globalIdx4);
441 CellData& cellData4 = problem().variables().cellData(globalIdx4);
442 Scalar pc4 = cellData4.capillaryPressure();
443 Scalar temp1 = globalPos * gravity_;
444 Scalar temp2 = globalPosNeighbor * gravity_;
445 Scalar temp3 = globalPos3 * gravity_;
446 Scalar temp4 = globalPos4 * gravity_;
449 potential[wPhaseIdx] += (pressI-temp1*densityW_mean) * T[0]
450 +(pressJ-temp2*densityW_mean) * T[1]
451 +(press3- temp3*densityW_mean) * T[2]
452 +(press4- temp4*densityW_mean) * T[3];
453 potential[nPhaseIdx] += (pressI+pcI-temp1*densityNW_mean) * T[0]
454 +(pressJ+pcJ-temp2*densityNW_mean) * T[1]
455 +(press3+pc3- temp3*densityNW_mean) * T[2]
456 +(press4+pc4- temp4*densityNW_mean) * T[3];
458 else if(pressureType==pn)
460 potential[wPhaseIdx] += (pressI-pcI-temp1*densityW_mean) * T[0]
461 + (pressJ-pcJ-temp2*densityW_mean) * T[1]
462 + (press3-pc3- temp3*densityW_mean) * T[2]
463 + (press4-pc4- temp4*densityW_mean) * T[3];
464 potential[nPhaseIdx] += (pressI-temp1*densityNW_mean) * T[0]
465 + (pressJ-temp2*densityNW_mean) * T[1]
466 + (press3-temp3*densityNW_mean) * T[2]
467 + (press4-temp4*densityNW_mean) * T[3];
470 if(halfedgesStored != 1)
472 for(
int banana = 1; banana < halfedgesStored; banana ++)
475 problem().variables().getMpfaData3D(intersection, additionalT,
476 globalPosAdditional3, globalIdxAdditional3,
477 globalPosAdditional4, globalIdxAdditional4 ,
480 Scalar gravityContributionAdditonal
481 = temp1 * additionalT[0] + temp2 * additionalT[1]
482 + globalPosAdditional3*gravity_ * additionalT[2]
483 + globalPosAdditional4*gravity_ * additionalT[3];
484 CellData& cellDataA3 = problem().variables().cellData(globalIdxAdditional3);
485 CellData& cellDataA4 = problem().variables().cellData(globalIdxAdditional4);
489 potential[wPhaseIdx] += pressI * additionalT[0] + pressJ * additionalT[1]
490 +problem().pressureModel().pressure(globalIdxAdditional3) * additionalT[2]
491 +problem().pressureModel().pressure(globalIdxAdditional4)* additionalT[3];
492 potential[nPhaseIdx] += (pressI+pcI) * additionalT[0] + (pressJ+pcJ) * additionalT[1]
493 +(problem().pressureModel().pressure(globalIdxAdditional3)+cellDataA3.capillaryPressure()) * additionalT[2]
494 +(problem().pressureModel().pressure(globalIdxAdditional4)+cellDataA4.capillaryPressure()) * additionalT[3];
496 else if(pressureType==pn)
498 potential[wPhaseIdx] += (pressI-pcI) * additionalT[0] + (pressJ-pcJ) * additionalT[1]
499 + (problem().pressureModel().pressure(globalIdxAdditional3)-cellDataA3.capillaryPressure()) * additionalT[2]
500 + (problem().pressureModel().pressure(globalIdxAdditional4)-cellDataA4.capillaryPressure()) * additionalT[3];
501 potential[nPhaseIdx] += pressI * additionalT[0] + pressJ * additionalT[1]
502 + problem().pressureModel().pressure(globalIdxAdditional3) * additionalT[2]
503 + problem().pressureModel().pressure(globalIdxAdditional4) * additionalT[3];
505 potential[wPhaseIdx] -= gravityContributionAdditonal * densityW_mean;
506 potential[nPhaseIdx] -= gravityContributionAdditonal * densityNW_mean;
511 Dune::FieldVector<bool, NumPhases> doUpwinding(
true);
512 PhaseVector lambda(0.);
513 for(
int phaseIdx = 0; phaseIdx < NumPhases; phaseIdx++)
516 if(phaseIdx == wPhaseIdx)
517 contiEqIdx = contiWEqIdx;
519 contiEqIdx = contiNEqIdx;
521 if(!this->impet_ or !this->restrictFluxInTransport_)
523 if(potential[phaseIdx] > 0.)
525 lambda[phaseIdx] = cellDataI.mobility(phaseIdx);
526 cellDataI.setUpwindCell(intersection.indexInInside(), contiEqIdx,
true);
528 else if(potential[phaseIdx] < 0.)
530 lambda[phaseIdx] = cellDataJ.mobility(phaseIdx);
531 cellDataI.setUpwindCell(intersection.indexInInside(), contiEqIdx,
false);
535 doUpwinding[phaseIdx] =
false;
536 cellDataI.setUpwindCell(intersection.indexInInside(), contiEqIdx,
false);
537 cellDataJ.setUpwindCell(intersection.indexInOutside(), contiEqIdx,
false);
542 bool cellIwasUpwindCell;
544 if(elementI.level()>neighbor.level())
545 cellIwasUpwindCell = cellDataI.isUpwindCell(intersection.indexInInside(), contiEqIdx);
547 cellIwasUpwindCell = !cellDataJ.isUpwindCell(intersection.indexInOutside(), contiEqIdx);
549 if (potential[phaseIdx] > 0. && cellIwasUpwindCell)
550 lambda[phaseIdx] = cellDataI.mobility(phaseIdx);
551 else if (potential[phaseIdx] < 0. && !cellIwasUpwindCell)
552 lambda[phaseIdx] = cellDataJ.mobility(phaseIdx);
554 else if(this->restrictFluxInTransport_ == 2)
555 doUpwinding[phaseIdx] =
false;
559 if (potential[phaseIdx] > 0. && Dune::FloatCmp::ne<Scalar, Dune::FloatCmp::absolute>(cellDataJ.mobility(phaseIdx), 0.0, 1.0e-30))
560 lambda[phaseIdx] = cellDataI.mobility(phaseIdx);
561 else if (potential[phaseIdx] < 0. && Dune::FloatCmp::ne<Scalar, Dune::FloatCmp::absolute>(cellDataI.mobility(phaseIdx), 0.0, 1.0e-30))
562 lambda[phaseIdx] = cellDataJ.mobility(phaseIdx);
564 doUpwinding[phaseIdx] =
false;
568 if(!doUpwinding[phaseIdx])
571 if(cellDataI.mobility(phaseIdx)+cellDataJ.mobility(phaseIdx)==0.)
573 potential[phaseIdx] = 0;
578 fluxEntries[wCompIdx] -= potential[phaseIdx] / volume
579 *
harmonicMean(cellDataI.massFraction(phaseIdx, wCompIdx) * cellDataI.mobility(phaseIdx) * cellDataI.density(phaseIdx),
580 cellDataJ.massFraction(phaseIdx, wCompIdx) * cellDataJ.mobility(phaseIdx) * cellDataJ.density(phaseIdx));
581 fluxEntries[nCompIdx] -= potential[phaseIdx] / volume
582 *
harmonicMean(cellDataI.massFraction(phaseIdx, nCompIdx) * cellDataI.mobility(phaseIdx) * cellDataI.density(phaseIdx),
583 cellDataJ.massFraction(phaseIdx, nCompIdx) * cellDataJ.mobility(phaseIdx) * cellDataJ.density(phaseIdx));
587 timestepFlux[0] += max(0.,
588 - potential[phaseIdx] / volume
589 *
harmonicMean(cellDataI.mobility(phaseIdx),cellDataJ.mobility(phaseIdx)));
591 timestepFlux[1] += max(0.,
592 potential[phaseIdx] / volume
593 *
harmonicMean(cellDataI.mobility(phaseIdx),cellDataJ.mobility(phaseIdx))/SmobI[phaseIdx]);
596 this->averagedFaces_++;
597 #if DUNE_MINIMAL_DEBUG_LEVEL < 3
599 if(globalIdxI > globalIdxJ)
600 Dune::dinfo <<
"harmonicMean flux of phase" << phaseIdx <<
" used from cell" << globalIdxI<<
" into " << globalIdxJ
601 <<
" ; TE upwind I = "<< cellIwasUpwindCell <<
" but pot = "<< potential[phaseIdx] << std::endl;
605 potential[phaseIdx] = 0;
612 double velocityJIw = max((-lambda[wPhaseIdx] * potential[wPhaseIdx]) / volume, 0.0);
613 double velocityIJw = max(( lambda[wPhaseIdx] * potential[wPhaseIdx]) / volume, 0.0);
614 double velocityJIn = max((-lambda[nPhaseIdx] * potential[nPhaseIdx]) / volume, 0.0);
615 double velocityIJn = max(( lambda[nPhaseIdx] * potential[nPhaseIdx]) / volume, 0.0);
618 timestepFlux[0] += velocityJIw + velocityJIn;
620 double foutw = velocityIJw/SmobI[wPhaseIdx];
621 double foutn = velocityIJn/SmobI[nPhaseIdx];
624 if (isnan(foutw) || isinf(foutw) || foutw < 0) foutw = 0;
625 if (isnan(foutn) || isinf(foutn) || foutn < 0) foutn = 0;
626 timestepFlux[1] += foutw + foutn;
628 fluxEntries[wCompIdx] +=
629 velocityJIw * cellDataJ.massFraction(wPhaseIdx, wCompIdx) * densityWJ
630 - velocityIJw * cellDataI.massFraction(wPhaseIdx, wCompIdx) * densityWI
631 + velocityJIn * cellDataJ.massFraction(nPhaseIdx, wCompIdx) * densityNWJ
632 - velocityIJn * cellDataI.massFraction(nPhaseIdx, wCompIdx) * densityNWI;
633 fluxEntries[nCompIdx] +=
634 velocityJIw * cellDataJ.massFraction(wPhaseIdx, nCompIdx) * densityWJ
635 - velocityIJw * cellDataI.massFraction(wPhaseIdx, nCompIdx) * densityWI
636 + velocityJIn * cellDataJ.massFraction(nPhaseIdx, nCompIdx) * densityNWJ
637 - velocityIJn * cellDataI.massFraction(nPhaseIdx, nCompIdx) * densityNWI;
Define some often used mathematical functions.
Contains a class to exchange entries of a vector.
Defines the properties required for the adaptive sequential 2p2c models.
Finite volume discretization of the component transport equation.
constexpr Scalar harmonicMean(Scalar x, Scalar y, Scalar wx=1.0, Scalar wy=1.0) noexcept
Calculate the (weighted) harmonic mean of two scalar values.
Definition: math.hh:68
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type GetProp
get the type of a property (equivalent to old macro GET_PROP(...))
Definition: propertysystem.hh:140
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property (equivalent to old macro GET_PROP_TYPE(....
Definition: propertysystem.hh:149
A data handle class to exchange entries of a vector.
Definition: vectorcommdatahandle.hh:78
Compositional transport step in a finite volume discretization.
Definition: fv3dtransportadaptive.hh:56
virtual void update(const Scalar t, Scalar &dt, TransportSolutionType &updateVec, bool impes=false)
Calculate the update vector and determine timestep size.
Definition: fv3dtransportadaptive.hh:163
static const int pressureType
ā€¨Specifies if the MPFA is used on hanging nodes
Definition: fv3dtransportadaptive.hh:139
FV3dTransport2P2CAdaptive(Problem &problem)
Constructs a FV3dTransport2P2CAdaptive object.
Definition: fv3dtransportadaptive.hh:123
Problem & problem_
Definition: fv3dtransportadaptive.hh:134
void getMpfaFlux(Dune::FieldVector< Scalar, 2 > &, Dune::FieldVector< Scalar, 2 > &, const IntersectionIterator &, CellData &)
Compute flux over an irregular interface using a mpfa method.
Definition: fv3dtransportadaptive.hh:346
virtual ~FV3dTransport2P2CAdaptive()
Definition: fv3dtransportadaptive.hh:129
bool enableMPFA
Definition: fv3dtransportadaptive.hh:136
Compositional transport step in a Finite Volume discretization.
Definition: fvtransport.hh:62
Definition: fvtransport.hh:114
Dune::FieldVector< EntryType, 2 *dim > faceFluxes
Definition: fvtransport.hh:115
Dune::FieldVector< Scalar, 2 *dim > faceTargetDt
Definition: fvtransport.hh:116