24#ifndef DUMUX_FV2DTRANSPORT2P2C_ADAPTIVE_HH
25#define DUMUX_FV2DTRANSPORT2P2C_ADAPTIVE_HH
27#include <dune/grid/common/gridenums.hh>
28#include <dune/common/float_cmp.hh>
57template<
class TypeTag>
72 dim = GridView::dimension, dimWorld = GridView::dimensionworld,
73 NumPhases = getPropValue<TypeTag, Properties::NumPhases>()
77 pw = Indices::pressureW,
78 pn = Indices::pressureN
82 wPhaseIdx = Indices::wPhaseIdx, nPhaseIdx = Indices::nPhaseIdx,
83 wCompIdx = Indices::wPhaseIdx, nCompIdx = Indices::nPhaseIdx,
84 contiWEqIdx=Indices::contiWEqIdx, contiNEqIdx=Indices::contiNEqIdx
87 using IntersectionIterator =
typename GridView::IntersectionIterator;
89 using GlobalPosition = Dune::FieldVector<Scalar, dimWorld>;
90 using DimMatrix = Dune::FieldMatrix<Scalar, dim, dim>;
91 using TransmissivityMatrix = Dune::FieldVector<Scalar,dim+1>;
92 using PhaseVector = Dune::FieldVector<Scalar, NumPhases>;
102 virtual void update(
const Scalar t, Scalar& dt, TransportSolutionType& updateVec,
bool impes =
false);
104 void getMpfaFlux(Dune::FieldVector<Scalar, 2>&, Dune::FieldVector<Scalar, 2>&,
105 const IntersectionIterator&, CellData&);
119 enableMPFA = getParam<bool>(
"GridAdapt.EnableMultiPointFluxApproximation");
131 static const int pressureType = getPropValue<TypeTag, Properties::PressureFormulation>();
153template<
class TypeTag>
156 this->impet_ = impet;
159 this->averagedFaces_ = 0;
162 unsigned int size_ = problem_.gridView().size(0);
163 updateVec.resize(getPropValue<TypeTag, Properties::NumComponents>());
164 updateVec[wCompIdx].resize(size_);
165 updateVec[nCompIdx].resize(size_);
166 updateVec[wCompIdx] = 0;
167 updateVec[nCompIdx] = 0;
169 if (this->enableLocalTimeStepping())
171 if (this->timeStepData_.size() != size_)
172 this->timeStepData_.resize(size_);
176 if(this->totalConcentration_.size() != size_)
178 this->totalConcentration_[wCompIdx].resize(size_);
179 this->totalConcentration_[nCompIdx].resize(size_);
182 for (
int i = 0; i< problem().gridView().size(0); i++)
184 CellData& cellDataI = problem().variables().cellData(i);
185 for(
int compIdx = 0; compIdx < getPropValue<TypeTag, Properties::NumComponents>(); compIdx++)
187 this->totalConcentration_[compIdx][i]
188 = cellDataI.totalConcentration(compIdx);
194 int restrictingCell = -1;
196 Dune::FieldVector<Scalar, 2> entries(0.), timestepFlux(0.);
198 for (
const auto& element : elements(problem().gridView()))
201 int globalIdxI = problem().variables().index(element);
202 CellData& cellDataI = problem().variables().cellData(globalIdxI);
205 double sumfactorin = 0;
206 double sumfactorout = 0;
208 if (this->enableLocalTimeStepping())
210 LocalTimesteppingData& localData = this->timeStepData_[globalIdxI];
211 for (
int i = 0; i < 2*dim; i++)
213 if (localData.faceTargetDt[i] < this->accumulatedDt_ + this->dtThreshold_)
215 localData.faceFluxes[i] = 0.0;
221 const auto isEndIt = problem().gridView().iend(element);
222 for (
auto isIt = problem().gridView().ibegin(element); isIt != isEndIt; ++isIt)
224 const auto& intersection = *isIt;
226 int indexInInside = intersection.indexInInside();
229 if (intersection.neighbor())
231 if (enableMPFA && (intersection.outside().level() != element.level()))
232 getMpfaFlux(entries, timestepFlux, isIt, cellDataI);
234 this->getFlux(entries, timestepFlux, intersection, cellDataI);
238 if (intersection.boundary())
240 this->getFluxOnBoundary(entries, timestepFlux, intersection, cellDataI);
243 if (this->enableLocalTimeStepping())
245 LocalTimesteppingData& localData = this->timeStepData_[globalIdxI];
247 if (localData.faceTargetDt[indexInInside] < this->accumulatedDt_ + this->dtThreshold_)
249 localData.faceFluxes[indexInInside] += entries;
255 updateVec[wCompIdx][globalIdxI] += entries[wCompIdx];
256 updateVec[nCompIdx][globalIdxI] += entries[nCompIdx];
260 sumfactorin += timestepFlux[0];
261 sumfactorout += timestepFlux[1];
265 if (this->enableLocalTimeStepping())
267 LocalTimesteppingData& localData = this->timeStepData_[globalIdxI];
268 for (
int i=0; i < 2*dim; i++)
270 updateVec[wCompIdx][globalIdxI] += localData.faceFluxes[i][wCompIdx];
271 updateVec[nCompIdx][globalIdxI] += localData.faceFluxes[i][nCompIdx];
276 PrimaryVariables q(NAN);
277 problem().source(q, element);
278 updateVec[wCompIdx][globalIdxI] += q[contiWEqIdx];
279 updateVec[nCompIdx][globalIdxI] += q[contiNEqIdx];
283 sumfactorin = max(sumfactorin,sumfactorout)
284 / problem().spatialParams().porosity(element);
287 if (this->enableLocalTimeStepping())
289 this->timeStepData_[globalIdxI].dt = 1./sumfactorin;
290 if ( 1./sumfactorin < dt)
293 restrictingCell= globalIdxI;
298 if ( 1./sumfactorin < dt)
301 restrictingCell= globalIdxI;
309 using ElementMapper =
typename SolutionTypes::ElementMapper;
311 for (
int i = 0; i < updateVec.size(); i++)
313 DataHandle dataHandle(problem_.variables().elementMapper(), updateVec[i]);
314 problem_.gridView().template communicate<DataHandle>(dataHandle,
315 Dune::InteriorBorder_All_Interface,
316 Dune::ForwardCommunication);
318 dt = problem_.gridView().comm().min(dt);
323 Dune::dinfo <<
"Timestep restricted by CellIdx " << restrictingCell <<
" leads to dt = "
324 <<dt * getParam<Scalar>(
"Impet.CFLFactor")<< std::endl;
325 if(this->averagedFaces_ != 0)
326 Dune::dinfo <<
" Averageing done for " << this->averagedFaces_ <<
" faces. "<< std::endl;
351template<
class TypeTag>
353 const IntersectionIterator& intersectionIterator, CellData& cellDataI)
358 auto elementI = intersectionIterator->inside();
359 int globalIdxI = problem().variables().index(elementI);
362 const GlobalPosition globalPos = elementI.geometry().center();
363 const GlobalPosition& gravity_ = problem().gravity();
365 Scalar volume = elementI.geometry().volume();
368 Scalar pressI = problem().pressureModel().pressure(globalIdxI);
369 Scalar pcI = cellDataI.capillaryPressure();
374 const auto fluidMatrixInteraction = Deprecated::makePcKrSw(Scalar{}, problem().spatialParams(), elementI);
376 PhaseVector SmobI(0.);
378 SmobI[wPhaseIdx] = max((cellDataI.saturation(wPhaseIdx)
379 - fluidMatrixInteraction.pcSwCurve().effToAbsParams().swr())
381 SmobI[nPhaseIdx] = max((cellDataI.saturation(nPhaseIdx)
382 - fluidMatrixInteraction.pcSwCurve().effToAbsParams().snr())
385 Scalar densityWI (0.), densityNWI(0.);
386 densityWI= cellDataI.density(wPhaseIdx);
387 densityNWI = cellDataI.density(nPhaseIdx);
389 PhaseVector potential(0.);
392 auto neighbor = intersectionIterator->outside();
393 int globalIdxJ = problem().variables().index(neighbor);
394 CellData& cellDataJ = problem().variables().cellData(globalIdxJ);
397 const GlobalPosition& globalPosNeighbor = neighbor.geometry().center();
400 GlobalPosition distVec = globalPosNeighbor - globalPos;
402 Scalar dist = distVec.two_norm();
404 GlobalPosition unitDistVec(distVec);
408 Scalar densityWJ (0.), densityNWJ(0.);
409 densityWJ = cellDataJ.density(wPhaseIdx);
410 densityNWJ = cellDataJ.density(nPhaseIdx);
413 double densityW_mean = (densityWI + densityWJ) * 0.5;
414 double densityNW_mean = (densityNWI + densityNWJ) * 0.5;
416 double pressJ = problem().pressureModel().pressure(globalIdxJ);
417 Scalar pcJ = cellDataJ.capillaryPressure();
421 GlobalPosition globalPos3(0.);
423 TransmissivityMatrix T(0.);
424 IntersectionIterator additionalIsIt = intersectionIterator;
425 TransmissivityMatrix additionalT(0.);
428 = problem().variables().getMpfaData(*intersectionIterator, additionalIsIt, T, additionalT,
429 globalPos3, globalIdx3);
430 if (halfedgesStored == 0)
431 halfedgesStored = problem().pressureModel().computeTransmissibilities(intersectionIterator,additionalIsIt,
432 T,additionalT, globalPos3, globalIdx3 );
435 Scalar press3 = problem().pressureModel().pressure(globalIdx3);
436 CellData& cellData3 = problem().variables().cellData(globalIdx3);
437 Scalar pc3 = cellData3.capillaryPressure();
438 Scalar temp1 = globalPos * gravity_;
439 Scalar temp2 = globalPosNeighbor * gravity_;
440 Scalar temp3 = globalPos3 * gravity_;
443 potential[wPhaseIdx] += (pressI-temp1*densityW_mean) * T[2]
444 +(pressJ-temp2*densityW_mean) * T[0]
445 +(press3- temp3*densityW_mean) * T[1];
446 potential[nPhaseIdx] += (pressI+pcI-temp1*densityNW_mean) * T[2]
447 +(pressJ+pcJ-temp2*densityNW_mean) * T[0]
448 +(press3+pc3- temp3*densityNW_mean) * T[1];
450 if(halfedgesStored == 2)
452 int AdditionalIdx = problem().variables().index(additionalIsIt->outside());
453 CellData& cellDataAdditional = problem().variables().cellData(AdditionalIdx);
454 potential[wPhaseIdx] += (pressI-temp1*densityW_mean) * additionalT[2]
455 +(pressJ-temp2*densityW_mean) * additionalT[0]
456 +(problem().pressureModel().pressure(AdditionalIdx)
457 -(additionalIsIt->outside().geometry().center()*gravity_*densityW_mean)
459 potential[nPhaseIdx] += (pressI+pcI-temp1*densityNW_mean) * additionalT[2]
460 +(pressJ+pcJ-temp2*densityNW_mean) * additionalT[0]
461 +(problem().pressureModel().pressure(AdditionalIdx)
462 + cellDataAdditional.capillaryPressure()
463 -(additionalIsIt->outside().geometry().center()*gravity_*densityNW_mean)
467 else if(pressureType==pn)
469 potential[wPhaseIdx] += (pressI-pcI-temp1*densityW_mean) * T[2]
470 + (pressJ-pcJ-temp2*densityW_mean) * T[0]
471 + (press3-pc3- temp3*densityW_mean) * T[1];
472 potential[nPhaseIdx] += (pressI-temp1*densityNW_mean) * T[2]
473 + (pressJ-temp2*densityNW_mean) * T[0]
474 + (press3-temp3*densityNW_mean) * T[1];
476 if(halfedgesStored == 2)
478 int AdditionalIdx = problem().variables().index(additionalIsIt->outside());
479 CellData& cellDataAdditional = problem().variables().cellData(AdditionalIdx);
481 potential[wPhaseIdx] += (pressI-pcI-temp1*densityW_mean) * additionalT[2]
482 +(pressJ-pcJ-temp2*densityW_mean) * additionalT[0]
483 +(problem().pressureModel().pressure(AdditionalIdx)
484 - cellDataAdditional.capillaryPressure()
485 -(additionalIsIt->outside().geometry().center()*gravity_*densityW_mean)
487 potential[nPhaseIdx] += (pressI-temp1*densityNW_mean) * additionalT[2]
488 +(pressJ-temp2*densityNW_mean) * additionalT[0]
489 +(problem().pressureModel().pressure(AdditionalIdx)
490 -(additionalIsIt->outside().geometry().center()*gravity_*densityNW_mean))
497 Dune::FieldVector<bool, NumPhases> doUpwinding(
true);
498 PhaseVector lambda(0.);
499 for(
int phaseIdx = 0; phaseIdx < NumPhases; phaseIdx++)
502 if(phaseIdx == wPhaseIdx)
503 contiEqIdx = contiWEqIdx;
505 contiEqIdx = contiNEqIdx;
507 if(!this->impet_ or !this->restrictFluxInTransport_)
509 if(potential[phaseIdx] > 0.)
511 lambda[phaseIdx] = cellDataI.mobility(phaseIdx);
512 if(elementI.level()>neighbor.level())
513 cellDataI.setUpwindCell(intersectionIterator->indexInInside(), contiEqIdx,
true);
515 else if(potential[phaseIdx] < 0.)
517 lambda[phaseIdx] = cellDataJ.mobility(phaseIdx);
518 if(elementI.level()>neighbor.level())
519 cellDataI.setUpwindCell(intersectionIterator->indexInInside(), contiEqIdx,
false);
523 doUpwinding[phaseIdx] =
false;
524 if(elementI.level()>neighbor.level())
525 cellDataI.setUpwindCell(intersectionIterator->indexInInside(), contiEqIdx,
false);
527 cellDataJ.setUpwindCell(intersectionIterator->indexInOutside(), contiEqIdx,
false);
532 bool cellIwasUpwindCell;
534 if(elementI.level()>neighbor.level())
535 cellIwasUpwindCell = cellDataI.isUpwindCell(intersectionIterator->indexInInside(), contiEqIdx);
537 cellIwasUpwindCell = !cellDataJ.isUpwindCell(intersectionIterator->indexInOutside(), contiEqIdx);
539 if (potential[phaseIdx] > 0. && cellIwasUpwindCell)
540 lambda[phaseIdx] = cellDataI.mobility(phaseIdx);
541 else if (potential[phaseIdx] < 0. && !cellIwasUpwindCell)
542 lambda[phaseIdx] = cellDataJ.mobility(phaseIdx);
544 else if(this->restrictFluxInTransport_ == 2)
545 doUpwinding[phaseIdx] =
false;
550 if (potential[phaseIdx] > 0. && Dune::FloatCmp::ne<Scalar, Dune::FloatCmp::absolute>(cellDataJ.mobility(phaseIdx), 0.0, 1.0e-30))
551 lambda[phaseIdx] = cellDataI.mobility(phaseIdx);
553 else if (potential[phaseIdx] < 0. && Dune::FloatCmp::ne<Scalar, Dune::FloatCmp::absolute>(cellDataI.mobility(phaseIdx), 0.0, 1.0e-30))
554 lambda[phaseIdx] = cellDataJ.mobility(phaseIdx);
556 doUpwinding[phaseIdx] =
false;
560 if(!doUpwinding[phaseIdx])
563 if(cellDataI.mobility(phaseIdx)+cellDataJ.mobility(phaseIdx)==0.)
565 potential[phaseIdx] = 0;
570 fluxEntries[wCompIdx] -= potential[phaseIdx] / volume
571 *
harmonicMean(cellDataI.massFraction(phaseIdx, wCompIdx) * cellDataI.mobility(phaseIdx) * cellDataI.density(phaseIdx),
572 cellDataJ.massFraction(phaseIdx, wCompIdx) * cellDataJ.mobility(phaseIdx) * cellDataJ.density(phaseIdx));
573 fluxEntries[nCompIdx] -= potential[phaseIdx] / volume
574 *
harmonicMean(cellDataI.massFraction(phaseIdx, nCompIdx) * cellDataI.mobility(phaseIdx) * cellDataI.density(phaseIdx),
575 cellDataJ.massFraction(phaseIdx, nCompIdx) * cellDataJ.mobility(phaseIdx) * cellDataJ.density(phaseIdx));
579 timestepFlux[0] += max(0.,
580 - potential[phaseIdx] / volume
581 *
harmonicMean(cellDataI.mobility(phaseIdx),cellDataJ.mobility(phaseIdx)));
583 timestepFlux[1] += max(0.,
584 potential[phaseIdx] / volume
585 *
harmonicMean(cellDataI.mobility(phaseIdx),cellDataJ.mobility(phaseIdx))/SmobI[phaseIdx]);
588 this->averagedFaces_++;
589 #if DUNE_MINIMAL_DEBUG_LEVEL < 3
591 if(globalIdxI > globalIdxJ)
592 Dune::dinfo <<
"harmonicMean flux of phase" << phaseIdx <<
" used from cell" << globalIdxI<<
" into " << globalIdxJ
593 <<
" ; TE upwind I = "<< cellDataI.isUpwindCell(intersectionIterator->indexInInside(), contiEqIdx)
594 <<
" but pot = "<< potential[phaseIdx] <<
" \n";
598 potential[phaseIdx] = 0;
605 double velocityJIw = max((-lambda[wPhaseIdx] * potential[wPhaseIdx]) / volume, 0.0);
606 double velocityIJw = max(( lambda[wPhaseIdx] * potential[wPhaseIdx]) / volume, 0.0);
607 double velocityJIn = max((-lambda[nPhaseIdx] * potential[nPhaseIdx]) / volume, 0.0);
608 double velocityIJn = max(( lambda[nPhaseIdx] * potential[nPhaseIdx]) / volume, 0.0);
611 timestepFlux[0] += velocityJIw + velocityJIn;
613 double foutw = velocityIJw/SmobI[wPhaseIdx];
614 double foutn = velocityIJn/SmobI[nPhaseIdx];
617 if (isnan(foutw) || isinf(foutw) || foutw < 0) foutw = 0;
618 if (isnan(foutn) || isinf(foutn) || foutn < 0) foutn = 0;
619 timestepFlux[1] += foutw + foutn;
621 fluxEntries[wCompIdx] +=
622 velocityJIw * cellDataJ.massFraction(wPhaseIdx, wCompIdx) * densityWJ
623 - velocityIJw * cellDataI.massFraction(wPhaseIdx, wCompIdx) * densityWI
624 + velocityJIn * cellDataJ.massFraction(nPhaseIdx, wCompIdx) * densityNWJ
625 - velocityIJn * cellDataI.massFraction(nPhaseIdx, wCompIdx) * densityNWI;
626 fluxEntries[nCompIdx] +=
627 velocityJIw * cellDataJ.massFraction(wPhaseIdx, nCompIdx) * densityWJ
628 - velocityIJw * cellDataI.massFraction(wPhaseIdx, nCompIdx) * densityWI
629 + velocityJIn * cellDataJ.massFraction(nPhaseIdx, nCompIdx) * densityNWJ
630 - velocityIJn * cellDataI.massFraction(nPhaseIdx, nCompIdx) * densityNWI;
Define some often used mathematical functions.
Contains a class to exchange entries of a vector.
Defines the properties required for the adaptive sequential 2p2c models.
Finite volume discretization of the component transport equation.
constexpr Scalar harmonicMean(Scalar x, Scalar y, Scalar wx=1.0, Scalar wy=1.0) noexcept
Calculate the (weighted) harmonic mean of two scalar values.
Definition: math.hh:68
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type GetProp
get the type of a property (equivalent to old macro GET_PROP(...))
Definition: propertysystem.hh:140
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property (equivalent to old macro GET_PROP_TYPE(....
Definition: propertysystem.hh:149
A data handle class to exchange entries of a vector.
Definition: vectorcommdatahandle.hh:78
Compositional Transport step in a Finite Volume discretization for a adaptive 2D-grid.
Definition: fv2dtransportadaptive.hh:59
virtual ~FV2dTransport2P2CAdaptive()
Definition: fv2dtransportadaptive.hh:122
FV2dTransport2P2CAdaptive(Problem &problem)
Constructs a FV2dTransport2P2CAdaptive object.
Definition: fv2dtransportadaptive.hh:116
static const int pressureType
gives kind of pressure used ( , , )
Definition: fv2dtransportadaptive.hh:131
Problem & problem_
Definition: fv2dtransportadaptive.hh:127
virtual void update(const Scalar t, Scalar &dt, TransportSolutionType &updateVec, bool impes=false)
Calculate the update vector and determine timestep size.
Definition: fv2dtransportadaptive.hh:154
bool enableMPFA
Definition: fv2dtransportadaptive.hh:129
void getMpfaFlux(Dune::FieldVector< Scalar, 2 > &, Dune::FieldVector< Scalar, 2 > &, const IntersectionIterator &, CellData &)
Compute flux over an irregular interface using a mpfa method.
Definition: fv2dtransportadaptive.hh:352
Compositional transport step in a Finite Volume discretization.
Definition: fvtransport.hh:62
Definition: fvtransport.hh:114