3.3.0
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
brineair.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*****************************************************************************
4 * See the file COPYING for full copying permissions. *
5 * *
6 * This program is free software: you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation, either version 3 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 *****************************************************************************/
24#ifndef DUMUX_BRINE_AIR_FLUID_SYSTEM_HH
25#define DUMUX_BRINE_AIR_FLUID_SYSTEM_HH
26
27#include <array>
28#include <cassert>
29#include <iomanip>
30
40
42
43#include <dumux/io/name.hh>
44
45#include "brine.hh"
46
47namespace Dumux {
48namespace FluidSystems {
49
54template<bool fastButSimplifiedRelations = false>
56{
57 static constexpr bool useBrineDensityAsLiquidMixtureDensity() { return fastButSimplifiedRelations;}
58 static constexpr bool useIdealGasDensity() { return fastButSimplifiedRelations; }
59};
60
69template <class Scalar,
71 class Policy = BrineAirDefaultPolicy<>>
73: public Base<Scalar, BrineAir<Scalar, H2Otype, Policy>>
74{
78
79public:
81 using H2O = H2Otype;
84
87
90
93
94 /****************************************
95 * Fluid phase related static parameters
96 ****************************************/
97 static constexpr int numPhases = 2; // one liquid and one gas phase
98 static constexpr int numComponents = 3; // H2O, Air, NaCl
99
100 static constexpr int liquidPhaseIdx = 0; // index of the liquid phase
101 static constexpr int gasPhaseIdx = 1; // index of the gas phase
102
103 static constexpr int phase0Idx = liquidPhaseIdx; // index of the first phase
104 static constexpr int phase1Idx = gasPhaseIdx; // index of the second phase
105
106 // export component indices to indicate the main component
107 // of the corresponding phase at atmospheric pressure 1 bar
108 // and room temperature 20°C:
109 static constexpr int H2OIdx = 0;
110 static constexpr int AirIdx = 1;
111 static constexpr int NaClIdx = 2;
112 static constexpr int comp0Idx = H2OIdx;
113 static constexpr int comp1Idx = AirIdx;
114 static constexpr int comp2Idx = NaClIdx;
115
116private:
117 struct BrineAdapterPolicy
118 {
119 using FluidSystem = Brine;
120
121 static constexpr int phaseIdx(int brinePhaseIdx) { return liquidPhaseIdx; }
122 static constexpr int compIdx(int brineCompIdx)
123 {
124 switch (brineCompIdx)
125 {
126 case Brine::H2OIdx: return H2OIdx;
127 case Brine::NaClIdx: return NaClIdx;
128 default: return 0; // this will never be reached, only needed to suppress compiler warning
129 }
130 }
131 };
132
133 template<class FluidState>
135
136public:
137
138 /****************************************
139 * phase related static parameters
140 ****************************************/
141
146 static std::string phaseName(int phaseIdx)
147 {
148 assert(0 <= phaseIdx && phaseIdx < numPhases);
149 switch (phaseIdx)
150 {
151 case liquidPhaseIdx: return IOName::liquidPhase();
152 case gasPhaseIdx: return IOName::gaseousPhase();
153 }
154 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
155 }
156
160 static constexpr bool isMiscible()
161 { return true; }
162
167 static constexpr bool isGas(int phaseIdx)
168 {
169 assert(0 <= phaseIdx && phaseIdx < numPhases);
170 return phaseIdx == gasPhaseIdx;
171 }
172
187 static bool isIdealMixture(int phaseIdx)
188 {
189 assert(0 <= phaseIdx && phaseIdx < numPhases);
190 // we assume Henry's and Raoult's laws for the water phase and
191 // and no interaction between gas molecules of different
192 // components, so all phases are ideal mixtures!
193 return true;
194 }
195
205 static constexpr bool isCompressible(int phaseIdx)
206 {
207 assert(0 <= phaseIdx && phaseIdx < numPhases);
208 // ideal gases are always compressible
209 if (phaseIdx == gasPhaseIdx)
210 return true;
211 // let brine decide for the liquid phase...
213 }
214
220 static bool isIdealGas(int phaseIdx)
221 {
222 assert(0 <= phaseIdx && phaseIdx < numPhases);
223 // let the fluids decide
224 if (phaseIdx == gasPhaseIdx)
225 return H2O::gasIsIdeal() && Air::gasIsIdeal();
226 return false; // not a gas
227 }
228
233 static constexpr int getMainComponent(int phaseIdx)
234 {
235 assert(0 <= phaseIdx && phaseIdx < numPhases);
236 if (phaseIdx == liquidPhaseIdx)
237 return H2OIdx;
238 else
239 return AirIdx;
240 }
241
242 /****************************************
243 * Component related static parameters
244 ****************************************/
249 static std::string componentName(int compIdx)
250 {
251 assert(0 <= compIdx && compIdx < numComponents);
252 switch (compIdx)
253 {
254 case H2OIdx: return H2O::name();
255 case AirIdx: return Air::name();
256 case NaClIdx: return NaCl::name();
257 }
258 DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx);
259 }
260
265 static Scalar molarMass(int compIdx)
266 {
267 assert(0 <= compIdx && compIdx < numComponents);
268 switch (compIdx)
269 {
270 case H2OIdx: return H2O::molarMass();
271 case AirIdx: return Air::molarMass();
272 case NaClIdx: return NaCl::molarMass();
273 }
274 DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx);
275 }
276
283 template <class FluidState>
284 static Scalar vaporPressure(const FluidState& fluidState, int compIdx)
285 {
286 // The vapor pressure of the water is affected by the
287 // salinity, thus, we forward to the interface of Brine here
288 if (compIdx == H2OIdx)
290 else if (compIdx == NaClIdx)
291 DUNE_THROW(Dune::NotImplemented, "NaCl::vaporPressure(t)");
292 else
293 DUNE_THROW(Dune::NotImplemented, "Invalid component index " << compIdx);
294 }
295
296 /****************************************
297 * thermodynamic relations
298 ****************************************/
305 static void init()
306 {
307 init(/*tempMin=*/273.15,
308 /*tempMax=*/800.0,
309 /*numTemptempSteps=*/200,
310 /*startPressure=*/-10,
311 /*endPressure=*/20e6,
312 /*pressureSteps=*/200);
313 }
314
326 static void init(Scalar tempMin, Scalar tempMax, unsigned nTemp,
327 Scalar pressMin, Scalar pressMax, unsigned nPress)
328 {
329 std::cout << "The brine-air fluid system was configured with the following policy:\n";
330 std::cout << " - use brine density as liquid mixture density: " << std::boolalpha << Policy::useBrineDensityAsLiquidMixtureDensity() << "\n";
331 std::cout << " - use ideal gas density: " << std::boolalpha << Policy::useIdealGasDensity() << std::endl;
332
333 if (H2O::isTabulated)
334 H2O::init(tempMin, tempMax, nTemp, pressMin, pressMax, nPress);
335 }
336
337 using Base::density;
351 template <class FluidState>
352 static Scalar density(const FluidState &fluidState, int phaseIdx)
353 {
354 assert(0 <= phaseIdx && phaseIdx < numPhases);
355
356 const auto T = fluidState.temperature(phaseIdx);
357 const auto p = fluidState.pressure(phaseIdx);
358
359 if (phaseIdx == liquidPhaseIdx)
360 {
361 // assume pure brine
362 if (Policy::useBrineDensityAsLiquidMixtureDensity())
364
365 // assume one molecule of gas replaces one "brine" molecule
366 else
368 *(H2O::molarMass()*fluidState.moleFraction(liquidPhaseIdx, H2OIdx)
369 + NaCl::molarMass()*fluidState.moleFraction(liquidPhaseIdx, NaClIdx)
370 + Air::molarMass()*fluidState.moleFraction(liquidPhaseIdx, AirIdx));
371 }
372 else if (phaseIdx == phase1Idx)
373 {
374 // for the gas phase assume an ideal gas
375 if (Policy::useIdealGasDensity())
376 return IdealGas::density(fluidState.averageMolarMass(phase1Idx), T, p);
377
378 // if useComplexRelations = true, compute density. NaCl is assumed
379 // not to be present in gas phase, NaCl has only solid interfaces implemented
380 return H2O::gasDensity(T, fluidState.partialPressure(phase1Idx, H2OIdx))
381 + Air::gasDensity(T, fluidState.partialPressure(phase1Idx, AirIdx));
382 }
383 else
384 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
385 }
386
387 using Base::molarDensity;
397 template <class FluidState>
398 static Scalar molarDensity(const FluidState& fluidState, int phaseIdx)
399 {
400 if (phaseIdx == liquidPhaseIdx)
402 else if (phaseIdx == phase1Idx)
403 {
404 const Scalar T = fluidState.temperature(phaseIdx);
405
406 // for the gas phase assume an ideal gas
407 if (Policy::useIdealGasDensity())
408 return IdealGas::molarDensity(T, fluidState.pressure(phaseIdx));
409
410 // if useComplexRelations = true, compute density. NaCl is assumed
411 // not to be present in gas phase, NaCl has only solid interfaces implemented
412 return H2O::gasMolarDensity(T, fluidState.partialPressure(phase1Idx, H2OIdx))
413 + Air::gasMolarDensity(T, fluidState.partialPressure(phase1Idx, AirIdx));
414 }
415 else
416 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
417 }
418
419 using Base::viscosity;
430 template <class FluidState>
431 static Scalar viscosity(const FluidState& fluidState, int phaseIdx)
432 {
433 assert(0 <= phaseIdx && phaseIdx < numPhases);
434
435 if (phaseIdx == liquidPhaseIdx)
437 else
438 return Air::gasViscosity(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx));
439 }
440
463 template <class FluidState>
464 static Scalar fugacityCoefficient(const FluidState& fluidState, int phaseIdx, int compIdx)
465 {
466 assert(0 <= phaseIdx && phaseIdx < numPhases);
467 assert(0 <= compIdx && compIdx < numComponents);
468
469 Scalar T = fluidState.temperature(phaseIdx);
470 Scalar p = fluidState.pressure(phaseIdx);
471
472 if (phaseIdx == gasPhaseIdx)
473 return 1.0;
474
475 else if (phaseIdx == liquidPhaseIdx)
476 {
477 // TODO: Should we use the vapor pressure of the mixture (brine) here?
478 // The presence of NaCl lowers the vapor pressure, thus, we would
479 // expect the fugacity coefficient to be lower as well. However,
480 // with the fugacity coefficient being dependent on the salinity,
481 // the equation system for the phase equilibria becomes non-linear
482 // and our constraint solvers assume linear system of equations.
483 if (compIdx == H2OIdx)
484 return H2O::vaporPressure(T)/p;
485
486 else if (compIdx == AirIdx)
487 return BinaryCoeff::H2O_Air::henry(T)/p;
488
489 // we assume nacl always stays in the liquid phase
490 else
491 return 0.0;
492 }
493
494 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
495 }
496
498 template <class FluidState>
499 static Scalar diffusionCoefficient(const FluidState &fluidState,
500 int phaseIdx,
501 int compIdx)
502 {
503 DUNE_THROW(Dune::NotImplemented, "Diffusion coefficients");
504 }
505
517 template <class FluidState>
518 static Scalar binaryDiffusionCoefficient(const FluidState& fluidState,
519 int phaseIdx,
520 int compIIdx,
521 int compJIdx)
522 {
523 assert(0 <= phaseIdx && phaseIdx < numPhases);
524 assert(0 <= compIIdx && compIIdx < numComponents);
525 assert(0 <= compJIdx && compJIdx < numComponents);
526
527 const auto T = fluidState.temperature(phaseIdx);
528 const auto p = fluidState.pressure(phaseIdx);
529
530 if (compIIdx > compJIdx)
531 std::swap(compIIdx, compJIdx);
532
533 if (phaseIdx == liquidPhaseIdx)
534 {
535 if(compIIdx == H2OIdx && compJIdx == AirIdx)
536 return H2O_Air::liquidDiffCoeff(T, p);
537 else if (compIIdx == H2OIdx && compJIdx == NaClIdx)
539 else
540 DUNE_THROW(Dune::NotImplemented, "Binary diffusion coefficient of components "
541 << compIIdx << " and " << compJIdx
542 << " in phase " << phaseIdx);
543 }
544 else if (phaseIdx == gasPhaseIdx)
545 {
546 if (compIIdx == H2OIdx && compJIdx == AirIdx)
547 return H2O_Air::gasDiffCoeff(T, p);
548
549 // NaCl is expected to never be present in the gas phase. we need to
550 // return a diffusion coefficient that does not case numerical problems.
551 // We choose a very small value here.
552 else if (compIIdx == AirIdx && compJIdx == NaClIdx)
553 return 1e-12;
554
555 else
556 DUNE_THROW(Dune::NotImplemented, "Binary diffusion coefficient of components "
557 << compIIdx << " and " << compJIdx
558 << " in phase " << phaseIdx);
559 }
560
561 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
562 }
563
564 using Base::enthalpy;
584 template <class FluidState>
585 static Scalar enthalpy(const FluidState& fluidState, int phaseIdx)
586 {
587 assert(0 <= phaseIdx && phaseIdx < numPhases);
588
589 const Scalar T = fluidState.temperature(phaseIdx);
590 const Scalar p = fluidState.pressure(phaseIdx);
591
592 if (phaseIdx == liquidPhaseIdx)
594 else
595 {
596 // This assumes NaCl not to be present in the gas phase
597 const Scalar XAir = fluidState.massFraction(gasPhaseIdx, AirIdx);
598 const Scalar XH2O = fluidState.massFraction(gasPhaseIdx, H2OIdx);
599 return XH2O*H2O::gasEnthalpy(T, p) + XAir*Air::gasEnthalpy(T, p);
600 }
601 }
602
609 template <class FluidState>
610 static Scalar componentEnthalpy(const FluidState& fluidState, int phaseIdx, int componentIdx)
611 {
612 const Scalar T = fluidState.temperature(gasPhaseIdx);
613 const Scalar p = fluidState.pressure(gasPhaseIdx);
614
615 if (phaseIdx == liquidPhaseIdx)
616 DUNE_THROW(Dune::NotImplemented, "The component enthalpies in the liquid phase are not implemented.");
617
618 else if (phaseIdx == gasPhaseIdx)
619 {
620 if (componentIdx == H2OIdx)
621 return H2O::gasEnthalpy(T, p);
622 else if (componentIdx == AirIdx)
623 return Air::gasEnthalpy(T, p);
624 else if (componentIdx == NaClIdx)
625 DUNE_THROW(Dune::InvalidStateException, "Implementation assumes NaCl not to be present in gas phase");
626 DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx);
627 }
628 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
629 }
630
641 template <class FluidState>
642 static Scalar thermalConductivity(const FluidState& fluidState, int phaseIdx)
643 {
644 if (phaseIdx == liquidPhaseIdx)
646 else if (phaseIdx == gasPhaseIdx)
647 return Air::gasThermalConductivity(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx));
648
649 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
650 }
651
662 using Base::heatCapacity;
663 template <class FluidState>
664 static Scalar heatCapacity(const FluidState &fluidState, int phaseIdx)
665 {
666 const Scalar T = fluidState.temperature(phaseIdx);
667 const Scalar p = fluidState.pressure(phaseIdx);
668
669 if (phaseIdx == liquidPhaseIdx)
671
672 // We assume NaCl not to be present in the gas phase here
673 else if (phaseIdx == gasPhaseIdx)
674 return Air::gasHeatCapacity(T, p)*fluidState.moleFraction(gasPhaseIdx, AirIdx)
675 + H2O::gasHeatCapacity(T, p)*fluidState.moleFraction(gasPhaseIdx, H2OIdx);
676
677 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
678 }
679};
680
681} // end namespace FluidSystems
682} // end namespace Dumux
683
684#endif
Some exceptions thrown in DuMux
A collection of input/output field names for common physical quantities.
Relations valid for an ideal gas.
Adapter class for fluid states with different indices.
Material properties of pure water .
Tabulates all thermodynamic properties of a given untabulated chemical species.
A simple class for the air fluid properties.
Material properties of pure salt .
Binary coefficients for water and air.
Definition: adapt.hh:29
std::string gaseousPhase() noexcept
I/O name of gaseous phase.
Definition: name.hh:123
std::string liquidPhase() noexcept
I/O name of liquid phase.
Definition: name.hh:119
Binary coefficients for water and air.
Definition: h2o_air.hh:37
static Scalar henry(Scalar temperature)
Henry coefficient for air in liquid water.
Definition: h2o_air.hh:48
static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure)
Binary diffusion coefficient for molecular water and air.
Definition: h2o_air.hh:68
static Scalar liquidDiffCoeff(Scalar temperature, Scalar pressure)
Diffusion coefficient for molecular nitrogen in liquid water.
Definition: h2o_air.hh:101
A class for the air fluid properties.
Definition: air.hh:47
static Scalar gasDensity(Scalar temperature, Scalar pressure)
The density of Air at a given pressure and temperature.
Definition: air.hh:85
static constexpr Scalar molarMass()
The molar mass in of Air.
Definition: air.hh:62
static const Scalar gasHeatCapacity(Scalar temperature, Scalar pressure)
Specific isobaric heat capacity of pure air.
Definition: air.hh:307
static Scalar gasViscosity(Scalar temperature, Scalar pressure)
The dynamic viscosity of Air at a given pressure and temperature.
Definition: air.hh:187
static Scalar gasThermalConductivity(Scalar temperature, Scalar pressure)
Thermal conductivity of air.
Definition: air.hh:345
static constexpr bool gasIsIdeal()
Returns true, the gas phase is assumed to be ideal.
Definition: air.hh:109
static Scalar gasEnthalpy(Scalar temperature, Scalar pressure)
Specific enthalpy of Air with 273.15 as basis.
Definition: air.hh:270
static std::string name()
A human readable name for Air.
Definition: air.hh:54
static Scalar gasMolarDensity(Scalar temperature, Scalar pressure)
The molar density of air in , depending on pressure and temperature.
Definition: air.hh:97
A class for the NaCl properties.
Definition: nacl.hh:47
static std::string name()
A human readable name for the NaCl.
Definition: nacl.hh:52
static constexpr Scalar molarMass()
The molar mass of NaCl in .
Definition: nacl.hh:60
Tabulates all thermodynamic properties of a given untabulated chemical species.
Definition: tabulatedcomponent.hh:82
Adapter class for fluid states with different indices.
Definition: adapter.hh:44
Fluid system base class.
Definition: fluidsystems/base.hh:45
static Scalar density(const FluidState &fluidState, int phaseIdx)
Calculate the density of a fluid phase.
Definition: fluidsystems/base.hh:134
static Scalar thermalConductivity(const FluidState &fluidState, int phaseIdx)
Thermal conductivity of a fluid phase .
Definition: fluidsystems/base.hh:390
static Scalar fugacityCoefficient(const FluidState &fluidState, int phaseIdx, int compIdx)
Calculate the fugacity coefficient of an individual component in a fluid phase.
Definition: fluidsystems/base.hh:197
static Scalar diffusionCoefficient(const FluidState &fluidState, int phaseIdx, int compIdx)
Calculate the binary molecular diffusion coefficient for a component in a fluid phase .
Definition: fluidsystems/base.hh:278
static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx)
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient for c...
Definition: fluidsystems/base.hh:326
static Scalar enthalpy(const FluidState &fluidState, int phaseIdx)
Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy .
Definition: fluidsystems/base.hh:363
static Scalar molarDensity(const FluidState &fluidState, int phaseIdx)
Calculate the molar density of a fluid phase.
Definition: fluidsystems/base.hh:160
static Scalar viscosity(const FluidState &fluidState, int phaseIdx)
Calculate the dynamic viscosity of a fluid phase .
Definition: fluidsystems/base.hh:236
static Scalar heatCapacity(const FluidState &fluidState, int phaseIdx)
Specific isobaric heat capacity of a fluid phase .
Definition: fluidsystems/base.hh:424
A compositional single phase fluid system consisting of two components, which are H2O and NaCl.
Definition: fluidsystems/brine.hh:47
static Scalar thermalConductivity(const FluidState &fluidState, int phaseIdx)
Thermal conductivity of a fluid phase .
Definition: fluidsystems/brine.hh:483
static Scalar viscosity(const FluidState &fluidState, int phaseIdx=liquidPhaseIdx)
Return the viscosity of the phase.
Definition: fluidsystems/brine.hh:281
static constexpr int H2OIdx
index of the water component
Definition: fluidsystems/brine.hh:62
static Scalar heatCapacity(const FluidState &fluidState, int phaseIdx)
Specific isobaric heat capacity of a fluid phase. .
Definition: fluidsystems/brine.hh:501
static Scalar enthalpy(const FluidState &fluidState, int phaseIdx)
Given a phase's composition, temperature and pressure, return its specific enthalpy .
Definition: fluidsystems/brine.hh:337
static Scalar vaporPressure(const FluidState &fluidState, int compIdx)
Vapor pressure of a component .
Definition: fluidsystems/brine.hh:308
static constexpr int NaClIdx
index of the NaCl component
Definition: fluidsystems/brine.hh:63
static Scalar molarDensity(const FluidState &fluidState, int phaseIdx=liquidPhaseIdx)
The molar density of the fluid phase in .
Definition: fluidsystems/brine.hh:418
static constexpr int liquidPhaseIdx
The one considered phase is liquid.
Definition: fluidsystems/brine.hh:60
static bool isCompressible(int phaseIdx=liquidPhaseIdx)
Returns true if and only if a fluid phase is assumed to be compressible.
Definition: fluidsystems/brine.hh:125
static Scalar density(const FluidState &fluidState, int phaseIdx=liquidPhaseIdx)
Return the phase density [kg/m^3].
Definition: fluidsystems/brine.hh:225
static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx)
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient for c...
Definition: fluidsystems/brine.hh:445
Policy for the brine-air fluid system.
Definition: brineair.hh:56
static constexpr bool useIdealGasDensity()
Definition: brineair.hh:58
static constexpr bool useBrineDensityAsLiquidMixtureDensity()
Definition: brineair.hh:57
A compositional two-phase fluid system with a liquid and a gaseous phase and , and (dissolved miner...
Definition: brineair.hh:74
static Scalar componentEnthalpy(const FluidState &fluidState, int phaseIdx, int componentIdx)
Returns the specific enthalpy of a component in a specific phase.
Definition: brineair.hh:610
static Scalar density(const FluidState &fluidState, int phaseIdx)
Given a phase's composition, temperature, pressure, and the partial pressures of all components,...
Definition: brineair.hh:352
static Scalar thermalConductivity(const FluidState &fluidState, int phaseIdx)
Thermal conductivity of a fluid phase .
Definition: brineair.hh:642
static constexpr int comp0Idx
Definition: brineair.hh:112
static constexpr bool isCompressible(int phaseIdx)
Returns true if and only if a fluid phase is assumed to be compressible.
Definition: brineair.hh:205
static constexpr int liquidPhaseIdx
Definition: brineair.hh:100
static constexpr int AirIdx
Definition: brineair.hh:110
static constexpr int NaClIdx
Definition: brineair.hh:111
static void init()
Initialize the fluid system's static parameters generically.
Definition: brineair.hh:305
static constexpr int numPhases
Definition: brineair.hh:97
static Scalar heatCapacity(const FluidState &fluidState, int phaseIdx)
Definition: brineair.hh:664
static constexpr int numComponents
Definition: brineair.hh:98
static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx)
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient for c...
Definition: brineair.hh:518
H2Otype H2O
export the involved components
Definition: brineair.hh:81
static Scalar viscosity(const FluidState &fluidState, int phaseIdx)
Calculate the dynamic viscosity of a fluid phase .
Definition: brineair.hh:431
static constexpr int comp2Idx
Definition: brineair.hh:114
static Scalar enthalpy(const FluidState &fluidState, int phaseIdx)
Given a phase's composition, temperature and pressure, return its specific enthalpy .
Definition: brineair.hh:585
static Scalar molarDensity(const FluidState &fluidState, int phaseIdx)
The molar density of a fluid phase in .
Definition: brineair.hh:398
static constexpr int getMainComponent(int phaseIdx)
Get the main component of a given phase if possible.
Definition: brineair.hh:233
static constexpr bool isGas(int phaseIdx)
Return whether a phase is gaseous.
Definition: brineair.hh:167
static Scalar fugacityCoefficient(const FluidState &fluidState, int phaseIdx, int compIdx)
Returns the fugacity coefficient of a component in a phase.
Definition: brineair.hh:464
static void init(Scalar tempMin, Scalar tempMax, unsigned nTemp, Scalar pressMin, Scalar pressMax, unsigned nPress)
Initialize the fluid system's static parameters using problem specific temperature and pressure range...
Definition: brineair.hh:326
static Scalar molarMass(int compIdx)
Return the molar mass of a component in .
Definition: brineair.hh:265
static Scalar vaporPressure(const FluidState &fluidState, int compIdx)
Vapor pressure of a component .
Definition: brineair.hh:284
static std::string componentName(int compIdx)
Return the human readable name of a component.
Definition: brineair.hh:249
static std::string phaseName(int phaseIdx)
Return the human readable name of a fluid phase.
Definition: brineair.hh:146
static constexpr int comp1Idx
Definition: brineair.hh:113
static constexpr int phase1Idx
Definition: brineair.hh:104
static constexpr int phase0Idx
Definition: brineair.hh:103
static constexpr bool isMiscible()
Returns whether the fluids are miscible.
Definition: brineair.hh:160
static Scalar diffusionCoefficient(const FluidState &fluidState, int phaseIdx, int compIdx)
Definition: brineair.hh:499
static bool isIdealGas(int phaseIdx)
Returns true if and only if a fluid phase is assumed to be an ideal gas.
Definition: brineair.hh:220
static constexpr int gasPhaseIdx
Definition: brineair.hh:101
static bool isIdealMixture(int phaseIdx)
Returns true if and only if a fluid phase is assumed to be an ideal mixture.
Definition: brineair.hh:187
Dumux::FluidSystems::Brine< Scalar, H2Otype > Brine
export the underlying brine fluid system for the liquid phase
Definition: brineair.hh:86
static constexpr int H2OIdx
Definition: brineair.hh:109
The a parameter cache which does nothing.
Definition: nullparametercache.hh:34
Relations valid for an ideal gas.
Definition: idealgas.hh:37
static constexpr Scalar density(Scalar avgMolarMass, Scalar temperature, Scalar pressure)
The density of the gas in , depending on pressure, temperature and average molar mass of the gas.
Definition: idealgas.hh:49
static constexpr Scalar molarDensity(Scalar temperature, Scalar pressure)
The molar density of the gas , depending on pressure and temperature.
Definition: idealgas.hh:70
Fluid system base class.
A fluid system for brine, i.e. H2O with dissolved NaCl.