3.1-git
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
Public Types | Public Member Functions | List of all members
Dumux::RichardsWellTracerProblem< TypeTag > Class Template Reference

A water infiltration problem with a low-permeability lens embedded into a high-permeability domain which uses the Richards box model. More...

#include <test/porousmediumflow/richardsnc/implicit/problem.hh>

Inheritance diagram for Dumux::RichardsWellTracerProblem< TypeTag >:
Inheritance graph

Description

template<class TypeTag>
class Dumux::RichardsWellTracerProblem< TypeTag >

A water infiltration problem with a low-permeability lens embedded into a high-permeability domain which uses the Richards box model.

A water infiltration problem with a low-permeability lens embedded into a high-permeability domain which uses the Richards model.

The domain is box shaped. Left and right boundaries are Dirichlet boundaries with fixed water pressure (hydrostatic, gradient from right to left), bottom boundary is closed (Neumann 0 boundary), the top boundary (Neumann 0 boundary) is also closed. Water is extracted at a point in the middle of the domain. This problem is very similar to the LensProblem which uses the TwoPBoxModel, with the main difference being that the domain is initially fully saturated by gas instead of water and water instead of a DNAPL infiltrates from the top.

This problem uses the Richards nc

To run the simulation execute the following line in shell: ./test_boxrichardsnc -ParameterFile test_boxrichardsnc.input -TimeManager.TEnd 10000000 ./test_ccrichardsnc -ParameterFile test_ccrichardsnc.input -TimeManager.TEnd 10000000

where the initial time step is 100 seconds, and the end of the simulation time is 10,000,000 seconds (115.7 days)

Public Types

using SpatialParams = GetPropType< TypeTag, Properties::SpatialParams >
 Export spatial parameter type. More...
 

Public Member Functions

 RichardsWellTracerProblem (std::shared_ptr< const GridGeometry > gridGeometry)
 
void printTracerMass (const SolutionVector &curSol, const GridVariables &gridVariables, const Scalar timeStepSize)
 
void setName (const std::string &newName)
 Set the problem name. More...
 
Problem parameters
const std::string & name () const
 The problem name. More...
 
Scalar temperature () const
 Returns the temperature [K] within a finite volume. More...
 
Scalar nonWettingReferencePressure () const
 Returns the reference pressure [Pa] of the non-wetting fluid phase within a finite volume. More...
 
Boundary conditions
BoundaryTypes boundaryTypesAtPos (const GlobalPosition &globalPos) const
 Specifies which kind of boundary condition should be used for which equation on a given boundary segment. More...
 
PrimaryVariables dirichletAtPos (const GlobalPosition &globalPos) const
 Evaluates the boundary conditions for a Dirichlet boundary segment. More...
 
NumEqVector neumannAtPos (const GlobalPosition &globalPos) const
 Evaluates the boundary conditions for a Neumann boundary segment. More...
 

Volume terms

void addPointSources (std::vector< PointSource > &pointSources) const
 Applies a vector of point sources which are possibly solution dependent. More...
 
PrimaryVariables initialAtPos (const GlobalPosition &globalPos) const
 Evaluates the initial values for a control volume. More...
 

Physical parameters for porous media problems

Scalar temperatureAtPos (const GlobalPosition &globalPos) const
 Returns the temperature \(\mathrm{[K]}\) at a given global position. More...
 
const GravityVector & gravityAtPos (const GlobalPosition &pos) const
 Returns the acceleration due to gravity \(\mathrm{[m/s^2]}\). More...
 
const GravityVector & gravity () const
 Returns the acceleration due to gravity \(\mathrm{[m/s^2]}\). More...
 
SpatialParamsspatialParams ()
 Returns the spatial parameters object. More...
 
const SpatialParamsspatialParams () const
 Returns the spatial parameters object. More...
 
GravityVector gravity_
 The gravity acceleration vector. More...
 
std::shared_ptr< SpatialParamsspatialParams_
 

Boundary conditions and sources defining the problem

BoundaryTypes boundaryTypes (const Element &element, const SubControlVolume &scv) const
 Specifies which kind of boundary condition should be used for which equation on a given boundary segment. More...
 
BoundaryTypes boundaryTypes (const Element &element, const SubControlVolumeFace &scvf) const
 Specifies which kind of boundary condition should be used for which equation on a given boundary segment. More...
 
PrimaryVariables dirichlet (const Element &element, const SubControlVolumeFace &scvf) const
 Evaluate the boundary conditions for a dirichlet control volume face. More...
 
PrimaryVariables dirichlet (const Element &element, const SubControlVolume &scv) const
 Evaluate the boundary conditions for a dirichlet control volume. More...
 
NumEqVector neumann (const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const ElementFluxVariablesCache &elemFluxVarsCache, const SubControlVolumeFace &scvf) const
 Evaluate the boundary conditions for a neumann boundary segment. More...
 
NumEqVector source (const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const SubControlVolume &scv) const
 Evaluate the source term for all phases within a given sub-control-volume. More...
 
NumEqVector sourceAtPos (const GlobalPosition &globalPos) const
 Evaluate the source term for all phases within a given sub-control-volume. More...
 
void pointSource (PointSource &source, const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const SubControlVolume &scv) const
 Evaluate the point sources (added by addPointSources) for all phases within a given sub-control-volume. More...
 
void pointSourceAtPos (PointSource &pointSource, const GlobalPosition &globalPos) const
 Evaluate the point sources (added by addPointSources) for all phases within a given sub-control-volume. More...
 
template<class MatrixBlock >
void addSourceDerivatives (MatrixBlock &block, const Element &element, const FVElementGeometry &fvGeometry, const VolumeVariables &volVars, const SubControlVolume &scv) const
 Add source term derivative to the Jacobian. More...
 
NumEqVector scvPointSources (const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const SubControlVolume &scv) const
 Adds contribution of point sources for a specific sub control volume to the values. Caution: Only overload this method in the implementation if you know what you are doing. More...
 
void computePointSourceMap ()
 Compute the point source map, i.e. which scvs have point source contributions. More...
 
const PointSourceMap & pointSourceMap () const
 Get the point source map. It stores the point sources per scv. More...
 
void applyInitialSolution (SolutionVector &sol) const
 Applies the initial solution for all degrees of freedom of the grid. More...
 
template<class Entity >
PrimaryVariables initial (const Entity &entity) const
 Evaluate the initial value for an element (for cell-centered models) or vertex (for box / vertex-centered models) More...
 
template<class ElementSolution >
Scalar extrusionFactor (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol) const
 Return how much the domain is extruded at a given sub-control volume. More...
 
Scalar extrusionFactorAtPos (const GlobalPosition &globalPos) const
 Return how much the domain is extruded at a given position. More...
 
const GridGeometry & fvGridGeometry () const
 The finite volume grid geometry. More...
 
const GridGeometry & gridGeometry () const
 The finite volume grid geometry. More...
 
const std::string & paramGroup () const
 The parameter group in which to retrieve runtime parameters. More...
 
static constexpr bool enableInternalDirichletConstraints ()
 If internal Dirichlet contraints are enabled Enables / disables internal (non-boundary) Dirichlet constraints. If this is overloaded to return true, the assembler calls problem.hasInternalDirichletConstraint(element, scv). This means you have to implement the following member function. More...
 
Implementation & asImp_ ()
 Returns the implementation of the problem (i.e. static polymorphism) More...
 
const Implementation & asImp_ () const
 Returns the implementation of the problem (i.e. static polymorphism) More...
 

Member Typedef Documentation

◆ SpatialParams

template<class TypeTag >
using Dumux::PorousMediumFlowProblem< TypeTag >::SpatialParams = GetPropType<TypeTag, Properties::SpatialParams>
inherited

Export spatial parameter type.

Constructor & Destructor Documentation

◆ RichardsWellTracerProblem()

template<class TypeTag >
Dumux::RichardsWellTracerProblem< TypeTag >::RichardsWellTracerProblem ( std::shared_ptr< const GridGeometry >  gridGeometry)
inline

Member Function Documentation

◆ addPointSources()

template<class TypeTag >
void Dumux::RichardsWellTracerProblem< TypeTag >::addPointSources ( std::vector< PointSource > &  pointSources) const
inline

Applies a vector of point sources which are possibly solution dependent.

Parameters
pointSourcesA vector of PointSource s that contain source values for all phases and space positions.

For this method, the values method of the point source has to return the absolute rate values in units \( [ \textnormal{unit of conserved quantity} / s ] \). Positive values mean that the conserved quantity is created, negative ones mean that it vanishes. E.g. for the mass balance that would be a mass rate in \( [ kg / s ] \).

Add point source in middle of domain

convert pump rate from kg/s to mol/s We assume we can't keep up the pump rate if the saturation sinks

◆ addSourceDerivatives()

template<class TypeTag >
template<class MatrixBlock >
void Dumux::FVProblem< TypeTag >::addSourceDerivatives ( MatrixBlock &  block,
const Element &  element,
const FVElementGeometry &  fvGeometry,
const VolumeVariables &  volVars,
const SubControlVolume &  scv 
) const
inlineinherited

Add source term derivative to the Jacobian.

Note
Only needed in case of analytic differentiation and solution dependent sources

◆ applyInitialSolution()

template<class TypeTag >
void Dumux::FVProblem< TypeTag >::applyInitialSolution ( SolutionVector &  sol) const
inlineinherited

Applies the initial solution for all degrees of freedom of the grid.

Parameters
solthe initial solution vector

◆ asImp_() [1/2]

template<class TypeTag >
Implementation & Dumux::FVProblem< TypeTag >::asImp_ ( )
inlineprotectedinherited

Returns the implementation of the problem (i.e. static polymorphism)

◆ asImp_() [2/2]

template<class TypeTag >
const Implementation & Dumux::FVProblem< TypeTag >::asImp_ ( ) const
inlineprotectedinherited

Returns the implementation of the problem (i.e. static polymorphism)

◆ boundaryTypes() [1/2]

template<class TypeTag >
BoundaryTypes Dumux::FVProblem< TypeTag >::boundaryTypes ( const Element &  element,
const SubControlVolume &  scv 
) const
inlineinherited

Specifies which kind of boundary condition should be used for which equation on a given boundary segment.

Parameters
elementThe finite element
scvThe sub control volume

◆ boundaryTypes() [2/2]

template<class TypeTag >
BoundaryTypes Dumux::FVProblem< TypeTag >::boundaryTypes ( const Element &  element,
const SubControlVolumeFace &  scvf 
) const
inlineinherited

Specifies which kind of boundary condition should be used for which equation on a given boundary segment.

Parameters
elementThe finite element
scvfThe sub control volume face

◆ boundaryTypesAtPos()

template<class TypeTag >
BoundaryTypes Dumux::RichardsWellTracerProblem< TypeTag >::boundaryTypesAtPos ( const GlobalPosition &  globalPos) const
inline

Specifies which kind of boundary condition should be used for which equation on a given boundary segment.

Parameters
globalPosThe position for which the boundary type is set

◆ computePointSourceMap()

template<class TypeTag >
void Dumux::FVProblem< TypeTag >::computePointSourceMap ( )
inlineinherited

Compute the point source map, i.e. which scvs have point source contributions.

Note
Call this on the problem before assembly if you want to enable point sources set via the addPointSources member function.

◆ dirichlet() [1/2]

template<class TypeTag >
PrimaryVariables Dumux::FVProblem< TypeTag >::dirichlet ( const Element &  element,
const SubControlVolume &  scv 
) const
inlineinherited

Evaluate the boundary conditions for a dirichlet control volume.

Parameters
elementThe finite element
scvthe sub control volume
Note
used for cell-centered discretization schemes

The method returns the boundary types information.

◆ dirichlet() [2/2]

template<class TypeTag >
PrimaryVariables Dumux::FVProblem< TypeTag >::dirichlet ( const Element &  element,
const SubControlVolumeFace &  scvf 
) const
inlineinherited

Evaluate the boundary conditions for a dirichlet control volume face.

Parameters
elementThe finite element
scvfthe sub control volume face
Note
used for cell-centered discretization schemes

The method returns the boundary types information.

◆ dirichletAtPos()

template<class TypeTag >
PrimaryVariables Dumux::RichardsWellTracerProblem< TypeTag >::dirichletAtPos ( const GlobalPosition &  globalPos) const
inline

Evaluates the boundary conditions for a Dirichlet boundary segment.

Parameters
globalPosThe position for which the Dirichlet value is set

For this method, the values parameter stores primary variables.

◆ enableInternalDirichletConstraints()

template<class TypeTag >
static constexpr bool Dumux::FVProblem< TypeTag >::enableInternalDirichletConstraints ( )
inlinestaticconstexprinherited

If internal Dirichlet contraints are enabled Enables / disables internal (non-boundary) Dirichlet constraints. If this is overloaded to return true, the assembler calls problem.hasInternalDirichletConstraint(element, scv). This means you have to implement the following member function.

bool hasInternalDirichletConstraint(const Element& element, const SubControlVolume& scv) const;

which returns a bool signifying whether the dof associated with the element/scv pair is contraint. If true is returned for a dof, the assembler calls problem.internalDiririchlet(element, scv). This means you have to additionally implement the following member function

PrimaryVariables internalDiririchlet(const Element& element, const SubControlVolume& scv) const;

which returns the enforced Dirichlet values the dof associated with the element/scv pair.

◆ extrusionFactor()

template<class TypeTag >
template<class ElementSolution >
Scalar Dumux::FVProblem< TypeTag >::extrusionFactor ( const Element &  element,
const SubControlVolume &  scv,
const ElementSolution &  elemSol 
) const
inlineinherited

Return how much the domain is extruded at a given sub-control volume.

This means the factor by which a lower-dimensional (1D or 2D) entity needs to be expanded to get a full dimensional cell. The default is 1.0 which means that 1D problems are actually thought as pipes with a cross section of 1 m^2 and 2D problems are assumed to extend 1 m to the back.

◆ extrusionFactorAtPos()

template<class TypeTag >
Scalar Dumux::FVProblem< TypeTag >::extrusionFactorAtPos ( const GlobalPosition &  globalPos) const
inlineinherited

Return how much the domain is extruded at a given position.

This means the factor by which a lower-dimensional (1D or 2D) entity needs to be expanded to get a full dimensional cell. The default is 1.0 which means that 1D problems are actually thought as pipes with a cross section of 1 m^2 and 2D problems are assumed to extend 1 m to the back.

◆ fvGridGeometry()

template<class TypeTag >
const GridGeometry & Dumux::FVProblem< TypeTag >::fvGridGeometry ( ) const
inlineinherited

The finite volume grid geometry.

◆ gravity()

template<class TypeTag >
const GravityVector & Dumux::PorousMediumFlowProblem< TypeTag >::gravity ( ) const
inlineinherited

Returns the acceleration due to gravity \(\mathrm{[m/s^2]}\).

This method is used for problems where the gravitational acceleration does not depend on the spatial position. The default behaviour is that if the ProblemEnableGravity property is true, \(\boldsymbol{g} = ( 0,\dots,\ -9.81)^T \) holds, else \(\boldsymbol{g} = ( 0,\dots, 0)^T \).

◆ gravityAtPos()

template<class TypeTag >
const GravityVector & Dumux::PorousMediumFlowProblem< TypeTag >::gravityAtPos ( const GlobalPosition &  pos) const
inlineinherited

Returns the acceleration due to gravity \(\mathrm{[m/s^2]}\).

This is discretization independent interface. By default it just calls gravity().

◆ gridGeometry()

template<class TypeTag >
const GridGeometry & Dumux::FVProblem< TypeTag >::gridGeometry ( ) const
inlineinherited

The finite volume grid geometry.

◆ initial()

template<class TypeTag >
template<class Entity >
PrimaryVariables Dumux::FVProblem< TypeTag >::initial ( const Entity &  entity) const
inlineinherited

Evaluate the initial value for an element (for cell-centered models) or vertex (for box / vertex-centered models)

Parameters
entityThe dof entity (element or vertex)

◆ initialAtPos()

template<class TypeTag >
PrimaryVariables Dumux::RichardsWellTracerProblem< TypeTag >::initialAtPos ( const GlobalPosition &  globalPos) const
inline

Evaluates the initial values for a control volume.

For this method, the values parameter stores primary variables.

Parameters
globalPosThe position for which the boundary type is set

◆ name()

template<class TypeTag >
const std::string & Dumux::RichardsWellTracerProblem< TypeTag >::name ( ) const
inline

The problem name.

This is used as a prefix for files generated by the simulation.

◆ neumann()

template<class TypeTag >
NumEqVector Dumux::FVProblem< TypeTag >::neumann ( const Element &  element,
const FVElementGeometry &  fvGeometry,
const ElementVolumeVariables &  elemVolVars,
const ElementFluxVariablesCache &  elemFluxVarsCache,
const SubControlVolumeFace &  scvf 
) const
inlineinherited

Evaluate the boundary conditions for a neumann boundary segment.

This is the method for the case where the Neumann condition is potentially solution dependent

Parameters
elementThe finite element
fvGeometryThe finite-volume geometry
elemVolVarsAll volume variables for the element
elemFluxVarsCacheFlux variables caches for all faces in stencil
scvfThe sub control volume face

Negative values mean influx. E.g. for the mass balance that would be the mass flux in \( [ kg / (m^2 \cdot s)] \).

◆ neumannAtPos()

template<class TypeTag >
NumEqVector Dumux::RichardsWellTracerProblem< TypeTag >::neumannAtPos ( const GlobalPosition &  globalPos) const
inline

Evaluates the boundary conditions for a Neumann boundary segment.

For this method, the values parameter stores the mass flux in normal direction of each phase. Negative values mean influx.

Parameters
globalPosThe position for which the Neumann value is set

◆ nonWettingReferencePressure()

template<class TypeTag >
Scalar Dumux::RichardsWellTracerProblem< TypeTag >::nonWettingReferencePressure ( ) const
inline

Returns the reference pressure [Pa] of the non-wetting fluid phase within a finite volume.

This problem assumes a constant reference pressure of 1 bar.

◆ paramGroup()

template<class TypeTag >
const std::string & Dumux::FVProblem< TypeTag >::paramGroup ( ) const
inlineinherited

The parameter group in which to retrieve runtime parameters.

◆ pointSource()

template<class TypeTag >
void Dumux::FVProblem< TypeTag >::pointSource ( PointSource &  source,
const Element &  element,
const FVElementGeometry &  fvGeometry,
const ElementVolumeVariables &  elemVolVars,
const SubControlVolume &  scv 
) const
inlineinherited

Evaluate the point sources (added by addPointSources) for all phases within a given sub-control-volume.

This is the method for the case where the point source is solution dependent

Parameters
sourceA single point source
elementThe finite element
fvGeometryThe finite-volume geometry
elemVolVarsAll volume variables for the element
scvThe sub control volume

For this method, the values() method of the point sources returns the absolute conserved quantity rate generated or annihilate in units \( [ \textnormal{unit of conserved quantity} / s ] \). Positive values mean that the conserved quantity is created, negative ones mean that it vanishes. E.g. for the mass balance that would be a mass rate in \( [ kg / s ] \).

◆ pointSourceAtPos()

template<class TypeTag >
void Dumux::FVProblem< TypeTag >::pointSourceAtPos ( PointSource &  pointSource,
const GlobalPosition &  globalPos 
) const
inlineinherited

Evaluate the point sources (added by addPointSources) for all phases within a given sub-control-volume.

This is the method for the case where the point source is space dependent

Parameters
pointSourceA single point source
globalPosThe point source position in global coordinates

For this method, the values() method of the point sources returns the absolute conserved quantity rate generated or annihilate in units \( [ \textnormal{unit of conserved quantity} / s ] \). Positive values mean that the conserved quantity is created, negative ones mean that it vanishes. E.g. for the mass balance that would be a mass rate in \( [ kg / s ] \).

◆ pointSourceMap()

template<class TypeTag >
const PointSourceMap & Dumux::FVProblem< TypeTag >::pointSourceMap ( ) const
inlineinherited

Get the point source map. It stores the point sources per scv.

◆ printTracerMass()

template<class TypeTag >
void Dumux::RichardsWellTracerProblem< TypeTag >::printTracerMass ( const SolutionVector &  curSol,
const GridVariables &  gridVariables,
const Scalar  timeStepSize 
)
inline

◆ scvPointSources()

template<class TypeTag >
NumEqVector Dumux::FVProblem< TypeTag >::scvPointSources ( const Element &  element,
const FVElementGeometry &  fvGeometry,
const ElementVolumeVariables &  elemVolVars,
const SubControlVolume &  scv 
) const
inlineinherited

Adds contribution of point sources for a specific sub control volume to the values. Caution: Only overload this method in the implementation if you know what you are doing.

◆ setName()

template<class TypeTag >
void Dumux::FVProblem< TypeTag >::setName ( const std::string &  newName)
inlineinherited

Set the problem name.

This static method sets the simulation name, which should be called before the application problem is declared! If not, the default name "sim" will be used.

Parameters
newNameThe problem's name

◆ source()

template<class TypeTag >
NumEqVector Dumux::FVProblem< TypeTag >::source ( const Element &  element,
const FVElementGeometry &  fvGeometry,
const ElementVolumeVariables &  elemVolVars,
const SubControlVolume &  scv 
) const
inlineinherited

Evaluate the source term for all phases within a given sub-control-volume.

This is the method for the case where the source term is potentially solution dependent and requires some quantities that are specific to the fully-implicit method.

Parameters
elementThe finite element
fvGeometryThe finite-volume geometry
elemVolVarsAll volume variables for the element
scvThe sub control volume

For this method, the return parameter stores the conserved quantity rate generated or annihilate per volume unit. Positive values mean that the conserved quantity is created, negative ones mean that it vanishes. E.g. for the mass balance that would be a mass rate in \( [ kg / (m^3 \cdot s)] \).

◆ sourceAtPos()

template<class TypeTag >
NumEqVector Dumux::FVProblem< TypeTag >::sourceAtPos ( const GlobalPosition &  globalPos) const
inlineinherited

Evaluate the source term for all phases within a given sub-control-volume.

Parameters
globalPosThe position of the center of the finite volume for which the source term ought to be specified in global coordinates

For this method, the values parameter stores the conserved quantity rate generated or annihilate per volume unit. Positive values mean that the conserved quantity is created, negative ones mean that it vanishes. E.g. for the mass balance that would be a mass rate in \( [ kg / (m^3 \cdot s)] \).

As a default, i.e. if the user's problem does not overload any source method return 0.0 (no source terms)

◆ spatialParams() [1/2]

template<class TypeTag >
SpatialParams & Dumux::PorousMediumFlowProblem< TypeTag >::spatialParams ( )
inlineinherited

Returns the spatial parameters object.

◆ spatialParams() [2/2]

template<class TypeTag >
const SpatialParams & Dumux::PorousMediumFlowProblem< TypeTag >::spatialParams ( ) const
inlineinherited

Returns the spatial parameters object.

◆ temperature()

template<class TypeTag >
Scalar Dumux::RichardsWellTracerProblem< TypeTag >::temperature ( ) const
inline

Returns the temperature [K] within a finite volume.

This problem assumes a temperature of 10 degrees Celsius.

◆ temperatureAtPos()

template<class TypeTag >
Scalar Dumux::PorousMediumFlowProblem< TypeTag >::temperatureAtPos ( const GlobalPosition &  globalPos) const
inlineinherited

Returns the temperature \(\mathrm{[K]}\) at a given global position.

This is not specific to the discretization. By default it just calls temperature().

Parameters
globalPosThe position in global coordinates where the temperature should be specified.

Member Data Documentation

◆ gravity_

template<class TypeTag >
GravityVector Dumux::PorousMediumFlowProblem< TypeTag >::gravity_
protectedinherited

The gravity acceleration vector.

◆ spatialParams_

template<class TypeTag >
std::shared_ptr<SpatialParams> Dumux::PorousMediumFlowProblem< TypeTag >::spatialParams_
protectedinherited

The documentation for this class was generated from the following file: