The spatial parameters class for the rough channel test. More...
#include <test/freeflow/shallowwater/roughchannel/spatialparams.hh>
The spatial parameters class for the rough channel test.
Public Member Functions | |
RoughChannelSpatialParams (std::shared_ptr< const GridGeometry > gridGeometry) | |
void | initFrictionLaw () |
Initialize the FrictionLaw. More... | |
Scalar | gravity (const GlobalPosition &globalPos) const |
Define the gravitation. More... | |
Scalar | gravity () const |
Define the gravitation. More... | |
const FrictionLaw< VolumeVariables > & | frictionLaw (const Element &element, const SubControlVolume &scv) const |
Get the frictionLaw. More... | |
Scalar | bedSurface (const Element &element, const SubControlVolume &scv) const |
Define the bed surface. More... | |
decltype(auto) | materialLawParams (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol) const |
Function for defining the parameters needed by constitutive relationships (kr-sw, pc-sw, etc.). More... | |
int | wettingPhase (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol) const |
Function for defining which phase is to be considered as the wetting phase. More... | |
int | wettingPhaseAtPos (const GlobalPosition &globalPos) const |
Function for defining which phase is to be considered as the wetting phase. More... | |
Scalar | harmonicMean (const Scalar T1, const Scalar T2, const GlobalPosition &normal) const |
Harmonic average of a discontinuous scalar field at discontinuity interface (for compatibility reasons with the function below) More... | |
DimWorldMatrix | harmonicMean (const DimWorldMatrix &T1, const DimWorldMatrix &T2, const GlobalPosition &normal) const |
Harmonic average of a discontinuous tensorial field at discontinuity interface. More... | |
decltype(auto) | permeability (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol) const |
Function for defining the (intrinsic) permeability \([m^2]\). More... | |
Scalar | porosity (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol) const |
Function for defining the porosity. That is possibly solution dependent. More... | |
Scalar | inertVolumeFraction (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol, int compIdx) const |
Function for defining the solid volume fraction. That is possibly solution dependent. More... | |
Scalar | inertVolumeFraction (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol, int compIdx) const |
Scalar | inertVolumeFraction (const Element &element, const SubControlVolume &scv, const ElementSolution &elemSol, int compIdx) const |
Scalar | beaversJosephCoeffAtPos (const GlobalPosition &globalPos) const |
Function for defining the Beavers-Joseph coefficient for multidomain problems \(\mathrm{[-]}\). More... | |
Scalar | forchCoeff (const SubControlVolumeFace &scvf) const |
Apply the Forchheimer coefficient for inertial forces calculation. More... | |
const GridGeometry & | fvGridGeometry () const |
The finite volume grid geometry. More... | |
const GridGeometry & | gridGeometry () const |
The finite volume grid geometry. More... | |
Static Public Member Functions | |
static constexpr bool | evaluatePermeabilityAtScvfIP () |
If the permeability should be evaluated directly at the scvf integration point (for convergence tests with analytical and continuous perm functions) or is evaluated at the scvs (for permeability fields with discontinuities) -> default. More... | |
Protected Member Functions | |
RoughChannelSpatialParams< GridGeometry, Scalar, VolumeVariables > & | asImp_ () |
const RoughChannelSpatialParams< GridGeometry, Scalar, VolumeVariables > & | asImp_ () const |
|
inline |
|
inlineprotectedinherited |
|
inlineprotectedinherited |
|
inlineinherited |
Function for defining the Beavers-Joseph coefficient for multidomain problems \(\mathrm{[-]}\).
globalPos | The global position |
|
inline |
Define the bed surface.
element | The current element |
scv | The sub-control volume inside the element. |
|
inlinestaticconstexprinherited |
If the permeability should be evaluated directly at the scvf integration point (for convergence tests with analytical and continuous perm functions) or is evaluated at the scvs (for permeability fields with discontinuities) -> default.
|
inlineinherited |
Apply the Forchheimer coefficient for inertial forces calculation.
scvf | The sub-control volume face where the intrinsic velocity ought to be calculated. |
|
inline |
Get the frictionLaw.
Get the frictionLaw, which already includes the friction value.
|
inlineinherited |
The finite volume grid geometry.
|
inline |
Define the gravitation.
|
inline |
Define the gravitation.
|
inlineinherited |
The finite volume grid geometry.
|
inlineinherited |
Harmonic average of a discontinuous tensorial field at discontinuity interface.
T1 | first tensor |
T2 | second tensor |
normal | The unit normal vector of the interface |
|
inlineinherited |
Harmonic average of a discontinuous scalar field at discontinuity interface (for compatibility reasons with the function below)
T1 | first scalar parameter |
T2 | second scalar parameter |
normal | The unit normal vector of the interface |
|
inlineinherited |
Function for defining the solid volume fraction. That is possibly solution dependent.
element | The current element |
scv | The sub-control volume inside the element. |
elemSol | The solution at the dofs connected to the element. |
compIdx | The solid component index |
|
inlineinherited |
|
inlineinherited |
|
inline |
Initialize the FrictionLaw.
|
inlineinherited |
Function for defining the parameters needed by constitutive relationships (kr-sw, pc-sw, etc.).
element | The current element |
scv | The sub-control volume inside the element. |
elemSol | The solution at the dofs connected to the element. |
|
inlineinherited |
Function for defining the (intrinsic) permeability \([m^2]\).
element | The current element |
scv | The sub-control volume inside the element. |
elemSol | The solution at the dofs connected to the element. |
|
inlineinherited |
Function for defining the porosity. That is possibly solution dependent.
element | The current element |
scv | The sub-control volume inside the element. |
elemSol | The solution at the dofs connected to the element. |
|
inlineinherited |
Function for defining which phase is to be considered as the wetting phase.
element | The current element |
scv | The sub-control volume inside the element. |
elemSol | The solution at the dofs connected to the element. |
|
inlineinherited |
Function for defining which phase is to be considered as the wetting phase.
globalPos | The global position |