Navier-Stokes problem base class. More...
#include <dumux/freeflow/navierstokes/problem.hh>
Navier-Stokes problem base class.
This implements gravity (if desired) and a function returning the temperature. Includes a specialized method used only by the staggered grid discretization.
Public Member Functions | |
NavierStokesProblem (std::shared_ptr< const GridGeometry > gridGeometry, const std::string ¶mGroup="") | |
The constructor. More... | |
Scalar | temperatureAtPos (const GlobalPosition &globalPos) const |
Returns the temperature \mathrm{[K]} at a given global position. More... | |
Scalar | temperature () const |
Returns the temperature within the domain. More... | |
const GravityVector & | gravity () const |
Returns the acceleration due to gravity. More... | |
bool | enableInertiaTerms () const |
Returns whether interia terms should be considered. More... | |
template<class SolutionVector , class G = GridGeometry> | |
std::enable_if< G::discMethod==DiscretizationMethod::staggered, void >::type | applyInitialFaceSolution (SolutionVector &sol, const SubControlVolumeFace &scvf, const PrimaryVariables &initSol) const |
Applys the initial face solution (velocities on the faces). Specialization for staggered grid discretization. More... | |
Scalar | pseudo3DWallFriction (const Scalar velocity, const Scalar viscosity, const Scalar height, const Scalar factor=8.0) const |
An additional drag term can be included as source term for the momentum balance to mimic 3D flow behavior in 2D: More... | |
template<class ElementVolumeVariables , class ElementFaceVariables , class G = GridGeometry> | |
std::enable_if< G::discMethod==DiscretizationMethod::staggered, Scalar >::type | pseudo3DWallFriction (const SubControlVolumeFace &scvf, const ElementVolumeVariables &elemVolVars, const ElementFaceVariables &elemFaceVars, const Scalar height, const Scalar factor=8.0) const |
Convenience function for staggered grid implementation. More... | |
Scalar | permeability (const Element &element, const SubControlVolumeFace &scvf) const |
Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition. More... | |
Scalar | alphaBJ (const SubControlVolumeFace &scvf) const |
Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition. More... | |
Scalar | betaBJ (const Element &element, const SubControlVolumeFace &scvf) const |
Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition. More... | |
Scalar | velocityPorousMedium (const Element &element, const SubControlVolumeFace &scvf) const |
Returns the velocity in the porous medium (which is 0 by default according to Saffmann). More... | |
const Scalar | bjsVelocity (const Element &element, const SubControlVolume &scv, const SubControlVolumeFace &faceOnPorousBoundary, const Scalar velocitySelf) const |
helper function to evaluate the slip velocity on the boundary when the Beavers-Joseph-Saffman condition is used More... | |
const Scalar | beaversJosephVelocity (const Element &element, const SubControlVolume &scv, const SubControlVolumeFace &faceOnPorousBoundary, const Scalar velocitySelf, const Scalar tangentialVelocityGradient) const |
helper function to evaluate the slip velocity on the boundary when the Beavers-Joseph condition is used More... | |
|
inline |
The constructor.
gridGeometry | The finite volume grid geometry |
paramGroup | The parameter group in which to look for runtime parameters first (default is "") |
|
inline |
Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition.
This member function must be overloaded in the problem implementation, if the BJS boundary condition is used.
|
inline |
Applys the initial face solution (velocities on the faces). Specialization for staggered grid discretization.
|
inline |
helper function to evaluate the slip velocity on the boundary when the Beavers-Joseph condition is used
|
inline |
Returns the alpha value required as input parameter for the Beavers-Joseph-Saffman boundary condition.
This member function must be overloaded in the problem implementation, if the BJS boundary condition is used.
|
inline |
helper function to evaluate the slip velocity on the boundary when the Beavers-Joseph-Saffman condition is used
|
inline |
Returns whether interia terms should be considered.
|
inline |
Returns the acceleration due to gravity.
If the Problem.EnableGravity
parameter is true, this means \boldsymbol{g} = ( 0,\dots,\ -9.81)^T , else \boldsymbol{g} = ( 0,\dots, 0)^T
|
inline |
Returns the intrinsic permeability of required as input parameter for the Beavers-Joseph-Saffman boundary condition.
This member function must be overloaded in the problem implementation, if the BJS boundary condition is used.
|
inline |
An additional drag term can be included as source term for the momentum balance to mimic 3D flow behavior in 2D:
f_{drag} = -(8 \mu / h^2)v
Here, h corresponds to the extruded height that is bounded by the imaginary walls. See Flekkoy et al. (1995) [25]
A value of 8.0 is used as a default factor, corresponding to the velocity profile at the center plane of the virtual height (maximum velocity). Setting this value to 12.0 corresponds to an depth-averaged velocity (Venturoli and Boek, 2006) [74].
|
inline |
Convenience function for staggered grid implementation.
|
inline |
Returns the temperature within the domain.
This method MUST be overwritten by the actual problem.
|
inline |
Returns the temperature \mathrm{[K]} at a given global position.
This is not specific to the discretization. By default it just calls temperature().
globalPos | The position in global coordinates where the temperature should be specified. |
|
inline |
Returns the velocity in the porous medium (which is 0 by default according to Saffmann).