version 3.9-dev
Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure > Class Template Reference

A compositional two-phase fluid system with water and air as components in both, the liquid and the gas phase. More...

#include <dumux/material/fluidsystems/h2oair.hh>

Inheritance diagram for Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >:

Description

template<class Scalar, class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
class Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >

This fluidsystem features gas and liquid phases of distilled water \((\mathrm{H_2O})\)) and air (Pseudo component composed of \(\mathrm{79\%\;N_2}\), \(\mathrm{20\%\;O_2}\) and \(\mathrm{1\%\;Ar}\)) as components. It is applied by default with the tabulated version of water of the IAPWS-formulation.

Public Types

using H2O = H2Otype
 
using Air = Dumux::Components::Air< Scalar >
 
using Scalar = Scalar
 export the scalar type More...
 
using ParameterCache = NullParameterCache
 The type of parameter cache objects. More...
 

Static Public Member Functions

static std::string phaseName (int phaseIdx)
 Return the human readable name of a phase. More...
 
static constexpr bool isMiscible ()
 Returns whether the fluids are miscible. More...
 
static constexpr bool isGas (int phaseIdx)
 Return whether a phase is gaseous. More...
 
static constexpr bool isIdealMixture (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to be an ideal mixture. More...
 
static constexpr bool isCompressible (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to be compressible. More...
 
static constexpr bool viscosityIsConstant (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to have a constant viscosity. More...
 
static constexpr bool isIdealGas (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to be an ideal gas. More...
 
static std::string componentName (int compIdx)
 Return the human readable name of a component. More...
 
static Scalar molarMass (int compIdx)
 Return the molar mass of a component \(\mathrm{[kg/mol]}\). More...
 
static Scalar criticalTemperature (int compIdx)
 Critical temperature of a component \(\mathrm{[K]}\). More...
 
static Scalar criticalPressure (int compIdx)
 Critical pressure of a component \(\mathrm{[Pa]}\). More...
 
template<class FluidState >
static Scalar vaporPressure (const FluidState &fluidState, int compIdx)
 Vapor pressure of a component \(\mathrm{[Pa]}\). More...
 
static Scalar criticalMolarVolume (int compIdx)
 Molar volume of a component at the critical point \(\mathrm{[m^3/mol]}\). More...
 
static Scalar acentricFactor (int compIdx)
 The acentric factor of a component \(\mathrm{[-]}\). More...
 
static void init ()
 Initialize the fluid system's static parameters generically. More...
 
static void init (Scalar tempMin, Scalar tempMax, unsigned nTemp, Scalar pressMin, Scalar pressMax, unsigned nPress)
 Initialize the fluid system's static parameters using problem specific temperature and pressure ranges. More...
 
template<class FluidState >
static Scalar density (const FluidState &fluidState, const int phaseIdx)
 Given a phase's composition, temperature, pressure, and the partial pressures of all components, return its density \(\mathrm{[kg/m^3]}\). More...
 
template<class FluidState >
static Scalar molarDensity (const FluidState &fluidState, int phaseIdx)
 Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More...
 
template<class FluidState >
static Scalar viscosity (const FluidState &fluidState, int phaseIdx)
 Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More...
 
template<class FluidState >
static Scalar fugacityCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx)
 Returns the fugacity coefficient \(\mathrm{[-]}\) of a component in a phase. More...
 
template<class FluidState >
static Scalar relativeHumidity (const FluidState &fluidState)
 Returns the relative humidity of the gas phase. More...
 
template<class FluidState >
static Scalar diffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx)
 Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More...
 
template<class FluidState >
static Scalar binaryDiffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx)
 Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More...
 
template<class FluidState >
static Scalar enthalpy (const FluidState &fluidState, int phaseIdx)
 Given a phase's composition, temperature and pressure, return its specific enthalpy \(\mathrm{[J/kg]}\). More...
 
template<class FluidState >
static Scalar componentEnthalpy (const FluidState &fluidState, int phaseIdx, int componentIdx)
 Returns the specific enthalpy \(\mathrm{[J/kg]}\) of a component in a specific phase. More...
 
template<class FluidState >
static Scalar thermalConductivity (const FluidState &fluidState, int phaseIdx)
 Thermal conductivity of a fluid phase \(\mathrm{[W/(m K)]}\). More...
 
template<class FluidState >
static Scalar heatCapacity (const FluidState &fluidState, int phaseIdx)
 Specific isobaric heat capacity of a fluid phase. \(\mathrm{[J/(kg*K)}\). More...
 
static constexpr bool isTracerFluidSystem ()
 Some properties of the fluid system. More...
 
static constexpr int getMainComponent (int phaseIdx)
 Get the main component of a given phase if possible. More...
 
static Scalar density (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase. More...
 
static Scalar molarDensity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More...
 
static Scalar fugacityCoefficient (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx, int compIdx)
 Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase. More...
 
static Scalar viscosity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More...
 
static Scalar diffusionCoefficient (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx, int compIdx)
 Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More...
 
static Scalar binaryDiffusionCoefficient (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx, int compIIdx, int compJIdx)
 Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More...
 
static Scalar enthalpy (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More...
 
static Scalar thermalConductivity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\). More...
 
static Scalar heatCapacity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More...
 

Static Public Attributes

static constexpr int numPhases = 2
 Number of phases in the fluid system. More...
 
static constexpr int numComponents = 2
 Number of components in the fluid system. More...
 
static constexpr int liquidPhaseIdx = 0
 index of the liquid phase More...
 
static constexpr int gasPhaseIdx = 1
 index of the gas phase More...
 
static constexpr int phase0Idx = liquidPhaseIdx
 index of the first phase More...
 
static constexpr int phase1Idx = gasPhaseIdx
 index of the second phase More...
 
static constexpr int H2OIdx = 0
 index of the first component More...
 
static constexpr int AirIdx = 1
 index of the second component More...
 
static constexpr int comp0Idx = H2OIdx
 index of the first component More...
 
static constexpr int comp1Idx = AirIdx
 index of the second component More...
 
static constexpr int liquidCompIdx = H2OIdx
 index of the liquid component More...
 
static constexpr int gasCompIdx = AirIdx
 index of the gas component More...
 

Member Typedef Documentation

◆ Air

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
using Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::Air = Dumux::Components::Air<Scalar>

◆ H2O

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
using Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::H2O = H2Otype

◆ ParameterCache

◆ Scalar

Member Function Documentation

◆ acentricFactor()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::acentricFactor ( int  compIdx)
inlinestatic
Parameters
compIdxThe index of the component to consider

◆ binaryDiffusionCoefficient() [1/2]

static Scalar Dumux::FluidSystems::Base< Scalar , H2OAir< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > >, H2OAirDefaultPolicy<> > >::binaryDiffusionCoefficient ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx,
int  compIIdx,
int  compJIdx 
)
inlinestaticinherited
Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase
compIIdxIndex of the component i
compJIdxIndex of the component j

◆ binaryDiffusionCoefficient() [2/2]

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::binaryDiffusionCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIIdx,
int  compJIdx 
)
inlinestatic
Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase
compIIdxIndex of the component i
compJIdxIndex of the component j

◆ componentEnthalpy()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::componentEnthalpy ( const FluidState &  fluidState,
int  phaseIdx,
int  componentIdx 
)
inlinestatic
Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider
componentIdxThe index of the component to consider

◆ componentName()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static std::string Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::componentName ( int  compIdx)
inlinestatic
Parameters
compIdxindex of the component

◆ criticalMolarVolume()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::criticalMolarVolume ( int  compIdx)
inlinestatic
Parameters
compIdxThe index of the component to consider

◆ criticalPressure()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::criticalPressure ( int  compIdx)
inlinestatic
Parameters
compIdxThe index of the component to consider

◆ criticalTemperature()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::criticalTemperature ( int  compIdx)
inlinestatic
Parameters
compIdxThe index of the component to consider

◆ density() [1/2]

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::density ( const FluidState &  fluidState,
const int  phaseIdx 
)
inlinestatic

If Policy::useH2ODensityAsLiquidMixtureDensity() == false, we apply Eq. (7) in Class et al. (2002a) [20]
for the liquid density.

Parameters
phaseIdxindex of the phase
fluidStatethe fluid state

◆ density() [2/2]

static Scalar Dumux::FluidSystems::Base< Scalar , H2OAir< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > >, H2OAirDefaultPolicy<> > >::density ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestaticinherited
Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ diffusionCoefficient() [1/2]

static Scalar Dumux::FluidSystems::Base< Scalar , H2OAir< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > >, H2OAirDefaultPolicy<> > >::diffusionCoefficient ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx,
int  compIdx 
)
inlinestaticinherited

Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law

\[ J = - D \nabla \mu_\kappa \]

where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation

\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]

where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase
compIdxIndex of the component

◆ diffusionCoefficient() [2/2]

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::diffusionCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law

\[ J = - D \nabla \mu_\kappa \]

where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation

\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]

where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase
compIdxIndex of the component

◆ enthalpy() [1/2]

static Scalar Dumux::FluidSystems::Base< Scalar , H2OAir< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > >, H2OAirDefaultPolicy<> > >::enthalpy ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestaticinherited
Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ enthalpy() [2/2]

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::enthalpy ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic
Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider

See: Class 2001: Theorie und numerische Modellierung nichtisothermer Mehrphasenprozesse in NAPL-kontaminierten porösen Medien Chapter 2.1.13 Innere Energie, Wäremekapazität, Enthalpie [21]

Formula (2.42): the specific enthalpy of a gasphase result from the sum of (enthalpies*mass fraction) of the components

◆ fugacityCoefficient() [1/2]

static Scalar Dumux::FluidSystems::Base< Scalar , H2OAir< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > >, H2OAirDefaultPolicy<> > >::fugacityCoefficient ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx,
int  compIdx 
)
inlinestaticinherited

The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation

\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase
compIdxIndex of the component

◆ fugacityCoefficient() [2/2]

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::fugacityCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIdx 
)
inlinestatic

The fugacity coefficient \(\phi^\kappa_\alpha\) of component \(\kappa\) in phase \(\alpha\) is connected to the fugacity \(f^\kappa_\alpha\) and the component's mole fraction \(x^\kappa_\alpha\) by means of the relation

\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]

where \(p_\alpha\) is the pressure of the fluid phase.

For liquids with very low miscibility this boils down to the Henry constant for the solutes and the saturated vapor pressure both divided by phase pressure.

◆ getMainComponent()

static constexpr int Dumux::FluidSystems::Base< Scalar , H2OAir< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > >, H2OAirDefaultPolicy<> > >::getMainComponent ( int  phaseIdx)
inlinestaticconstexprinherited
Parameters
phaseIdxThe index of the fluid phase to consider
Note
This only makes sense if this is not a tracer fluid system (then the bulk component is not balanced)

◆ heatCapacity() [1/2]

static Scalar Dumux::FluidSystems::Base< Scalar , H2OAir< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > >, H2OAirDefaultPolicy<> > >::heatCapacity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestaticinherited

Given a fluid state, an up-to-date parameter cache and a phase index, this method computes the isobaric heat capacity \(c_{p,\alpha}\) of the fluid phase. The isobaric heat capacity is defined as the partial derivative of the specific enthalpy \(h_\alpha\) to the fluid pressure \(p_\alpha\):

\( c_{p,\alpha} = \frac{\partial h_\alpha}{\partial p_\alpha} \)

Parameters
fluidStaterepresents all relevant thermodynamic quantities of a fluid system
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ heatCapacity() [2/2]

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::heatCapacity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic
Parameters
fluidStateAn arbitrary fluid state
phaseIdxfor which phase to give back the heat capacity

◆ init() [1/2]

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static void Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::init ( )
inlinestatic

If a tabulated H2O component is used, we do our best to create tables that always work.

◆ init() [2/2]

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static void Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::init ( Scalar  tempMin,
Scalar  tempMax,
unsigned  nTemp,
Scalar  pressMin,
Scalar  pressMax,
unsigned  nPress 
)
inlinestatic
Parameters
tempMinThe minimum temperature used for tabulation of water \(\mathrm{[K]}\)
tempMaxThe maximum temperature used for tabulation of water \(\mathrm{[K]}\)
nTempThe number of ticks on the temperature axis of the table of water
pressMinThe minimum pressure used for tabulation of water \(\mathrm{[Pa]}\)
pressMaxThe maximum pressure used for tabulation of water \(\mathrm{[Pa]}\)
nPressThe number of ticks on the pressure axis of the table of water

◆ isCompressible()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static constexpr bool Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::isCompressible ( int  phaseIdx)
inlinestaticconstexpr

Compressible means that the partial derivative of the density to the fluid pressure is always larger than zero.

Parameters
phaseIdxThe index of the fluid phase to consider

◆ isGas()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static constexpr bool Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::isGas ( int  phaseIdx)
inlinestaticconstexpr
Parameters
phaseIdxThe index of the fluid phase to consider

◆ isIdealGas()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static constexpr bool Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::isIdealGas ( int  phaseIdx)
inlinestaticconstexpr
Parameters
phaseIdxThe index of the fluid phase to consider

◆ isIdealMixture()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static constexpr bool Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::isIdealMixture ( int  phaseIdx)
inlinestaticconstexpr

We define an ideal mixture as a fluid phase where the fugacity coefficients of all components times the pressure of the phase are independent on the fluid composition. This assumption is true if Henry's law and Raoult's law apply. If you are unsure what this function should return, it is safe to return false. The only damage done will be (slightly) increased computation times in some cases.

Parameters
phaseIdxThe index of the fluid phase to consider

◆ isMiscible()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static constexpr bool Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::isMiscible ( )
inlinestaticconstexpr

◆ isTracerFluidSystem()

static constexpr bool Dumux::FluidSystems::Base< Scalar , H2OAir< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > >, H2OAirDefaultPolicy<> > >::isTracerFluidSystem ( )
inlinestaticconstexprinherited

If the fluid system only contains tracer components

◆ molarDensity() [1/2]

static Scalar Dumux::FluidSystems::Base< Scalar , H2OAir< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > >, H2OAirDefaultPolicy<> > >::molarDensity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestaticinherited

The molar density is defined by the mass density \(\rho_\alpha\) and the component molar mass \(M_\alpha\) after

\[\rho_{mol,\alpha} = \frac{\rho_\alpha}{M_\alpha} \;.\]

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ molarDensity() [2/2]

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::molarDensity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic
Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase

◆ molarMass()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::molarMass ( int  compIdx)
inlinestatic
Parameters
compIdxindex of the component

◆ phaseName()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static std::string Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::phaseName ( int  phaseIdx)
inlinestatic
Parameters
phaseIdxindex of the phase

◆ relativeHumidity()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::relativeHumidity ( const FluidState &  fluidState)
inlinestatic

The relative humidity is the ratio of the partial pressure of water vapor to the equilibrium vapor pressure of water at a given temperature.

◆ thermalConductivity() [1/2]

static Scalar Dumux::FluidSystems::Base< Scalar , H2OAir< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > >, H2OAirDefaultPolicy<> > >::thermalConductivity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestaticinherited
Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ thermalConductivity() [2/2]

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::thermalConductivity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic
Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider

Use the conductivity of air and water as a first approximation. Source: http://en.wikipedia.org/wiki/List_of_thermal_conductivities

◆ vaporPressure()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::vaporPressure ( const FluidState &  fluidState,
int  compIdx 
)
inlinestatic
Parameters
fluidStateThe fluid state
compIdxThe index of the component to consider

◆ viscosity() [1/2]

static Scalar Dumux::FluidSystems::Base< Scalar , H2OAir< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > >, H2OAirDefaultPolicy<> > >::viscosity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestaticinherited
Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ viscosity() [2/2]

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::viscosity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Compositional effects in the gas phase are accounted by the Wilke method. See Reid et al. (1987) [70]
4th edition, McGraw-Hill, 1987, 407-410 5th edition, McGraw-Hill, 2001, p. 9.21/22

Note
Compositional effects for a liquid mixture have to be implemented.
Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider

◆ viscosityIsConstant()

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
static constexpr bool Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::viscosityIsConstant ( int  phaseIdx)
inlinestaticconstexpr
Parameters
phaseIdxThe index of the fluid phase to consider

Member Data Documentation

◆ AirIdx

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::AirIdx = 1
staticconstexpr

◆ comp0Idx

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::comp0Idx = H2OIdx
staticconstexpr

◆ comp1Idx

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::comp1Idx = AirIdx
staticconstexpr

◆ gasCompIdx

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::gasCompIdx = AirIdx
staticconstexpr

◆ gasPhaseIdx

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::gasPhaseIdx = 1
staticconstexpr

◆ H2OIdx

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::H2OIdx = 0
staticconstexpr

◆ liquidCompIdx

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::liquidCompIdx = H2OIdx
staticconstexpr

◆ liquidPhaseIdx

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::liquidPhaseIdx = 0
staticconstexpr

◆ numComponents

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::numComponents = 2
staticconstexpr

◆ numPhases

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::numPhases = 2
staticconstexpr

◆ phase0Idx

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::phase0Idx = liquidPhaseIdx
staticconstexpr

◆ phase1Idx

template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar> >, class Policy = H2OAirDefaultPolicy<>, bool useKelvinVaporPressure = false>
constexpr int Dumux::FluidSystems::H2OAir< Scalar, H2Otype, Policy, useKelvinVaporPressure >::phase1Idx = gasPhaseIdx
staticconstexpr

The documentation for this class was generated from the following file: