version 3.10-dev
Dumux::BinaryCoeff::H2O_Air Class Reference

Binary coefficients for water and air.

#include <dumux/material/binarycoefficients/h2o_air.hh>

Static Public Member Functions

template<class Scalar >
static Scalar henry (Scalar temperature)
 Henry coefficient \(\mathrm{[Pa]}\) for air in liquid water. More...
 
template<class Scalar >
static Scalar gasDiffCoeff (Scalar temperature, Scalar pressure)
 Binary diffusion coefficient \(\mathrm{[m^2/s]}\) for molecular water and air. More...
 
template<class Scalar >
static Scalar liquidDiffCoeff (Scalar temperature, Scalar pressure)
 Diffusion coefficient \(\mathrm{[m^2/s]}\) for molecular nitrogen in liquid water. More...
 

Member Function Documentation

◆ gasDiffCoeff()

template<class Scalar >
static Scalar Dumux::BinaryCoeff::H2O_Air::gasDiffCoeff ( Scalar  temperature,
Scalar  pressure 
)
inlinestatic
Parameters
temperaturethe temperature \(\mathrm{[K]}\)
pressurethe phase pressure \(\mathrm{[Pa]}\) Vargaftik: Tables on the thermophysical properties of liquids and gases. John Wiley & Sons, New York, 1975. [86]
Walker, Sabey, Hampton: Studies of heat transfer and water migration in soils. Dep. of Agricultural and Chemical Engineering, Colorado State University, Fort Collins, 1981. [89]

◆ henry()

template<class Scalar >
static Scalar Dumux::BinaryCoeff::H2O_Air::henry ( Scalar  temperature)
inlinestatic
Parameters
temperaturethe temperature \(\mathrm{[K]}\)

Henry coefficient See: Stefan Finsterle (1993, page 33 Formula (2.9)) [30]
(fitted to data from Tchobanoglous & Schroeder, 1985 [84] )

◆ liquidDiffCoeff()

template<class Scalar >
static Scalar Dumux::BinaryCoeff::H2O_Air::liquidDiffCoeff ( Scalar  temperature,
Scalar  pressure 
)
inlinestatic

Lacking better data on water-air diffusion in liquids, we use at the moment the diffusion coefficient of the air's main component nitrogen!!

Parameters
temperaturethe temperature \(\mathrm{[K]}\)
pressurethe phase pressure \(\mathrm{[Pa]}\)

The empirical equations for estimating the diffusion coefficient in infinite solution which are presented in Reid, 1987 all show a linear dependency on temperature. We thus simply scale the experimentally obtained diffusion coefficient of Ferrell and Himmelblau by the temperature.

See: R. Reid et al. (1987, pp. 599) [72]
R. Ferrell, D. Himmelblau (1967, pp. 111-115) [28]


The documentation for this class was generated from the following file: