|
class | Dumux::Detail::IstlIterativeLinearSolver< LinearSolverTraits, LinearAlgebraTraits, InverseOperator, PreconditionerFactory, convertMultiTypeLATypes > |
| Standard dune-istl iterative linear solvers. More...
|
|
class | Dumux::Detail::DirectIstlSolver< LSTraits, LATraits, Solver, convertMultiTypeVectorAndMatrix > |
| Direct dune-istl linear solvers. More...
|
|
class | Dumux::LinearSolverParameters< LinearSolverTraits > |
| Generates a parameter tree required for the linear solvers and precondioners of the Dune ISTL. More...
|
|
class | Dumux::MatrixConverter< MultiTypeBlockMatrix, Scalar > |
| A helper class that converts a Dune::MultiTypeBlockMatrix into a plain Dune::BCRSMatrix TODO: allow block sizes for BCRSMatrix other than 1x1 ? More...
|
|
class | Dumux::VectorConverter< MultiTypeBlockVector, Scalar > |
| A helper class that converts a Dune::MultiTypeBlockVector into a plain Dune::BlockVector and transfers back values. More...
|
|
class | Dumux::ParallelMatrixHelper< Matrix, GridView, RowDofMapper, rowDofCodim > |
| Helper class for adding up matrix entries for border entities. More...
|
|
class | Dumux::LinearPDESolver< Assembler, LinearSolver, Comm > |
| An implementation of a linear PDE solver. More...
|
|
class | Dumux::SeqUzawa< M, X, Y, l > |
| A preconditioner based on the Uzawa algorithm for saddle-point problems of the form \( \begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} u\\ p \end{pmatrix} = \begin{pmatrix} f\\ g \end{pmatrix} \). More...
|
|
class | Dumux::ScotchBackend< IndexType > |
| A reordering backend using the scotch library. More...
|
|
class | Dumux::IterativePreconditionedSolverImpl |
| A general solver backend allowing arbitrary preconditioners and solvers. More...
|
|
class | Dumux::ExplicitDiagonalSolver |
| Solver for simple block-diagonal matrices (e.g. from explicit time stepping schemes) More...
|
|
class | Dumux::UzawaBiCGSTABBackend< LinearSolverTraits > |
| A Uzawa preconditioned BiCGSTAB solver for saddle-point problems. More...
|
|
class | Dumux::BlockDiagILU0Preconditioner< M, X, Y, blockLevel > |
| A simple ilu0 block diagonal preconditioner. More...
|
|
class | Dumux::BlockDiagILU0BiCGSTABSolver |
| A simple ilu0 block diagonal preconditioned BiCGSTABSolver. More...
|
|
class | Dumux::BlockDiagILU0RestartedGMResSolver |
| A simple ilu0 block diagonal preconditioned RestartedGMResSolver. More...
|
|
class | Dumux::BlockDiagAMGPreconditioner< M, X, Y, blockLevel > |
| A simple ilu0 block diagonal preconditioner. More...
|
|
class | Dumux::BlockDiagAMGBiCGSTABSolver |
| A simple ilu0 block diagonal preconditioned BiCGSTABSolver. More...
|
|
class | Dumux::LinearSolver |
| Base class for linear solvers. More...
|
|
class | Dumux::Detail::StokesPreconditioner< M, X, Y, l > |
| A Stokes preconditioner (saddle-point problem) for the problem \( \begin{pmatrix} A & B \\ C & 0 \end{pmatrix} \begin{pmatrix} u \\ p \end{pmatrix} = \begin{pmatrix} f \\ g \end{pmatrix}, \). More...
|
|
class | Dumux::StokesSolver< Matrix, Vector, VelocityGG, PressureGG > |
| Preconditioned iterative solver for the incompressible Stokes problem. More...
|
|
|
template<class ... T> |
using | Dumux::IstlSolverFactoryBackend = typename Detail::IstlSolverFactoryBackendImplHelper< sizeof...(T)>::template type< T... > |
| A linear solver using the dune-istl solver factory to choose the solver and preconditioner at runtime. More...
|
|
template<class LSTraits , class LATraits > |
using | Dumux::ILUBiCGSTABIstlSolver = Detail::IstlIterativeLinearSolver< LSTraits, LATraits, Dune::BiCGSTABSolver< typename LATraits::SingleTypeVector >, Detail::IstlSolvers::IstlDefaultBlockLevelPreconditionerFactory< Dune::SeqILU >, true > |
| An ILU preconditioned BiCGSTAB solver using dune-istl. More...
|
|
template<class LSTraits , class LATraits > |
using | Dumux::ILURestartedGMResIstlSolver = Detail::IstlIterativeLinearSolver< LSTraits, LATraits, Dune::RestartedGMResSolver< typename LATraits::SingleTypeVector >, Detail::IstlSolvers::IstlDefaultBlockLevelPreconditionerFactory< Dune::SeqILU >, true > |
| An ILU preconditioned GMres solver using dune-istl. More...
|
|
template<class LSTraits , class LATraits > |
using | Dumux::SSORBiCGSTABIstlSolver = Detail::IstlIterativeLinearSolver< LSTraits, LATraits, Dune::BiCGSTABSolver< typename LATraits::Vector >, Detail::IstlSolvers::IstlDefaultBlockLevelPreconditionerFactory< Dune::SeqSSOR > > |
| An SSOR-preconditioned BiCGSTAB solver using dune-istl. More...
|
|
template<class LSTraits , class LATraits > |
using | Dumux::SSORCGIstlSolver = Detail::IstlIterativeLinearSolver< LSTraits, LATraits, Dune::CGSolver< typename LATraits::Vector >, Detail::IstlSolvers::IstlDefaultBlockLevelPreconditionerFactory< Dune::SeqSSOR > > |
| An SSOR-preconditioned CG solver using dune-istl. More...
|
|
template<class LSTraits , class LATraits > |
using | Dumux::AMGBiCGSTABIstlSolver = Detail::IstlIterativeLinearSolver< LSTraits, LATraits, Dune::BiCGSTABSolver< typename LATraits::SingleTypeVector >, Detail::IstlSolvers::IstlAmgPreconditionerFactory, true > |
| An AMG preconditioned BiCGSTAB solver using dune-istl. More...
|
|
template<class LSTraits , class LATraits > |
using | Dumux::AMGCGIstlSolver = Detail::IstlIterativeLinearSolver< LSTraits, LATraits, Dune::CGSolver< typename LATraits::SingleTypeVector >, Detail::IstlSolvers::IstlAmgPreconditionerFactory, true > |
| An AMG preconditioned CG solver using dune-istl. More...
|
|
template<class LSTraits , class LATraits > |
using | Dumux::UzawaBiCGSTABIstlSolver = Detail::IstlIterativeLinearSolver< LSTraits, LATraits, Dune::BiCGSTABSolver< typename LATraits::Vector >, Detail::IstlSolvers::IstlDefaultBlockLevelPreconditionerFactory< Dumux::SeqUzawa > > |
| An Uzawa preconditioned BiCGSTAB solver using dune-istl. More...
|
|
template<class LinearSolverTraits > |
using | Dumux::ParallelISTLHelper = Detail::ParallelISTLHelperImpl< LinearSolverTraits, LinearSolverTraits::canCommunicate > |
| A parallel helper class providing a parallel decomposition of all degrees of freedom. More...
|
|
template<class LSTraits , class LATraits >
Solver: The BiCGSTAB (stabilized biconjugate gradients method) solver has faster and smoother convergence than the original BiCG. While, it can be applied to nonsymmetric matrices, the preconditioner SSOR assumes symmetry.
See: Van der Vorst, H. A. (1992). "Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems". SIAM J. Sci. and Stat. Comput. 13 (2): 631–644. doi:10.1137/0913035.
Preconditioner: AMG (algebraic multigrid)
template<class LSTraits , class LATraits >
Solver: CG (conjugate gradient) is an iterative method for solving linear systems with a symmetric, positive definite matrix.
See: Helfenstein, R., Koko, J. (2010). "Parallel preconditioned conjugate
gradient algorithm on GPU", Journal of Computational and Applied Mathematics, Volume 236, Issue 15, Pages 3584–3590, http://dx.doi.org/10.1016/j.cam.2011.04.025.
Preconditioner: AMG (algebraic multigrid)
template<class LSTraits , class LATraits >
Solver: The BiCGSTAB (stabilized biconjugate gradients method) solver has faster and smoother convergence than the original BiCG. It can be applied to nonsymmetric matrices.
See: Van der Vorst, H. A. (1992). "Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems". SIAM J. Sci. and Stat. Comput. 13 (2): 631–644. doi:10.1137/0913035.
Preconditioner: ILU(n) incomplete LU factorization. The order n indicates fill-in. It can be damped by the relaxation parameter LinearSolver.PreconditionerRelaxation.
See: Golub, G. H., and Van Loan, C. F. (2012). Matrix computations. JHU Press.
template<class LSTraits , class LATraits >
Solver: The GMRes (generalized minimal residual) method is an iterative method for the numerical solution of a nonsymmetric system of linear equations.
See: Saad, Y., Schultz, M. H. (1986). "GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems." SIAM J. Sci. and Stat. Comput. 7: 856–869.
Preconditioner: ILU(n) incomplete LU factorization. The order n indicates fill-in. It can be damped by the relaxation parameter LinearSolver.PreconditionerRelaxation.
See: Golub, G. H., and Van Loan, C. F. (2012). Matrix computations. JHU Press.
template<class LSTraits , class LATraits >
Solver: The BiCGSTAB (stabilized biconjugate gradients method) solver has faster and smoother convergence than the original BiCG. While, it can be applied to nonsymmetric matrices, the preconditioner SSOR assumes symmetry.
See: Van der Vorst, H. A. (1992). "Bi-CGSTAB: A Fast and Smoothly Converging
Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems". SIAM J. Sci. and Stat. Comput. 13 (2): 631–644. doi:10.1137/0913035.
Preconditioner: SSOR symmetric successive overrelaxation method. The relaxation is controlled by the parameter LinearSolver.PreconditionerRelaxation. In each preconditioning step, it is applied as often as given by the parameter LinearSolver.PreconditionerIterations.
See: Golub, G. H., and Van Loan, C. F. (2012). Matrix computations. JHU Press.
template<class LSTraits , class LATraits >
Solver: CG (conjugate gradient) is an iterative method for solving linear systems with a symmetric, positive definite matrix.
See: Helfenstein, R., Koko, J. (2010). "Parallel preconditioned conjugate
gradient algorithm on GPU", Journal of Computational and Applied Mathematics, Volume 236, Issue 15, Pages 3584–3590, http://dx.doi.org/10.1016/j.cam.2011.04.025.
Preconditioner: SSOR symmetric successive overrelaxation method. The relaxation is controlled by the parameter LinearSolver.PreconditionerRelaxation. In each preconditioning step, it is applied as often as given by the parameter LinearSolver.PreconditionerIterations.
See: Golub, G. H., and Van Loan, C. F. (2012). Matrix computations. JHU Press.