K-omega model. More...
A single-phase, isothermal k-omega 2-Eq. model.
Single-phase Reynolds-Averaged Navier-Stokes flow.
A single-phase, isothermal Reynolds-Averaged Navier-Stokes model.
This model implements a single-phase, isothermal Reynolds-Averaged Navier-Stokes model, solving the momentum balance equation
\[ \frac{\partial (\varrho \textbf{v})}{\partial t} + \nabla \cdot (\varrho \textbf{v} \textbf{v}^{\text{T}}) = \nabla \cdot (\mu_\textrm{eff} (\nabla \textbf{v} + \nabla \textbf{v}^{\text{T}})) - \nabla p + \varrho \textbf{g} - \textbf{f} \]
The effective viscosity is composed of the fluid and the eddy viscosity:
\[ \mu_\textrm{eff} = \mu + \mu_\textrm{t} \]
.
Two additional PDEs, one for the turbulentKineticEnergy (k) and a second for the dissipation (omega) are used to calculate the eddy viscosity for this model. The model is taken from Wilcox, 2008 [87].
Turbulent Kinetic Energy balance:
\[ \frac{\partial \left( \varrho k \right)}{\partial t} + \nabla \cdot \left( \mathbf{v} \varrho k \right) - \nabla \cdot \left[ \left( \mu + \sigma_\textrm{k} \mu_\textrm{t} \right) \nabla k \right] - P + \beta_k^{*} k \varrho \omega = 0 \]
with \( P = 2 \mu_\textrm{t} \mathbf{S} \cdot \mathbf{S} \) and \( S_{ij} = \frac{1}{2} \left[ \frac{\partial}{\partial x_i} v_j + \frac{\partial}{\partial x_j} v_i \right] \) based on \( a_{ij} \cdot b_{ij} = \sum_{i,j} a_{ij} b_{ij} \).
Dissipation balance:
\[ \frac{\partial \left( \varrho \omega \right)}{\partial t} + \nabla \cdot \left( \mathbf{v} \varrho \omega \right) - \nabla \cdot \left[ \left( \mu + \sigma_{\omega} \mu_\textrm{t} \right) \nabla \omega \right] - \alpha \frac{\omega}{k} P + \beta_{\omega} \omega^2 - \varrho \frac{\sigma_d}{\omega} \nabla k \nabla \omega = 0 \]
The dynamic eddy viscosity \( \mu_\textrm{t} \) is calculated as follows:
\[ \mu_\textrm{t} = \varrho \frac{k}{\tilde{\omega}} \]
With a limited dissipation:
\[ \tilde{\omega} = \textrm{max} \left\{ \omega, 0.875 \sqrt{\frac{P}{\mu_\textrm{t} \beta_\textrm{k}}} \right\} \]
And a cross-diffusion coefficient \( \sigma_\textrm{d} \)
\[ \sigma_\text{d} = \begin{cases} 0 & \mbox{, if } \; \nabla k \cdot \nabla \omega \le 0 \\ 0.125 & \mbox{, if } \; \nabla k \cdot \nabla \omega > 0 \end{cases}. \]
Files | |
file | freeflow/rans/twoeq/komega/fluxvariables.hh |
file | freeflow/rans/twoeq/komega/iofields.hh |
file | freeflow/rans/twoeq/komega/localresidual.hh |
file | freeflow/rans/twoeq/komega/model.hh |
A single-phase, isothermal k-omega 2-Eq. model. | |
file | freeflow/rans/twoeq/komega/problem.hh |
K-Omega turbulence model problem base class. | |
file | freeflow/rans/twoeq/komega/staggered/fluxvariables.hh |
file | freeflow/rans/twoeq/komega/staggered/localresidual.hh |
file | freeflow/rans/twoeq/komega/volumevariables.hh |
Classes | |
struct | Dumux::KOmegaIOFields |
Adds I/O fields for the Reynolds-Averaged Navier-Stokes model. More... | |
struct | Dumux::Properties::KOmegaModelTraits< dimension > |
Traits for the k-omega model. More... | |
class | Dumux::RANSProblemImpl< TypeTag, TurbulenceModel::komega > |
K-Omega turbulence model problem base class. More... | |
class | Dumux::KOmegaFluxVariablesImpl< TypeTag, BaseFluxVariables, DiscretizationMethod > |
The flux variables class for the k-omega model using the staggered grid discretization. More... | |
class | Dumux::KOmegaResidualImpl< TypeTag, BaseLocalResidual, DiscretizationMethod > |
Element-wise calculation of the residual for k-omega models using the staggered discretization. More... | |
class | Dumux::KOmegaVolumeVariables< Traits, NSVolumeVariables > |
Volume variables for the isothermal single-phase k-omega 2-Eq model. More... | |
Typedefs | |
template<class TypeTag , class BaseFluxVariables > | |
using | Dumux::KOmegaFluxVariables = KOmegaFluxVariablesImpl< TypeTag, BaseFluxVariables, typename GetPropType< TypeTag, Properties::GridGeometry >::DiscretizationMethod > |
The flux variables class for the k-omega model. This is a convenience alias for that actual, discretization-specific flux variables. More... | |
template<class TypeTag , class BaseLocalResidual > | |
using | Dumux::KOmegaResidual = KOmegaResidualImpl< TypeTag, BaseLocalResidual, typename GetPropType< TypeTag, Properties::GridGeometry >::DiscretizationMethod > |
The local residual class for the k-omega model. This is a convenience alias for the actual, discretization-specific local residual. More... | |
using Dumux::KOmegaFluxVariables = typedef KOmegaFluxVariablesImpl<TypeTag, BaseFluxVariables, typename GetPropType<TypeTag, Properties::GridGeometry>::DiscretizationMethod> |
using Dumux::KOmegaResidual = typedef KOmegaResidualImpl<TypeTag, BaseLocalResidual, typename GetPropType<TypeTag, Properties::GridGeometry>::DiscretizationMethod> |