A compositional two-phase fluid system with a liquid and a gaseous phase and \(H_2O\), \(Air\) and \(S\) (dissolved minerals) as components.
More...
template<class Scalar, class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar>>, class Policy = BrineAirDefaultPolicy<>>
class Dumux::FluidSystems::BrineAir< Scalar, H2Otype, Policy >
- Note
- This fluidsystem is applied by default with the tabulated version of water of the IAPWS-formulation.
|
static std::string | phaseName (int phaseIdx) |
| Return the human readable name of a fluid phase. More...
|
|
static constexpr bool | isMiscible () |
| Returns whether the fluids are miscible. More...
|
|
static constexpr bool | isGas (int phaseIdx) |
| Return whether a phase is gaseous. More...
|
|
static bool | isIdealMixture (int phaseIdx) |
| Returns true if and only if a fluid phase is assumed to be an ideal mixture. More...
|
|
static constexpr bool | isCompressible (int phaseIdx) |
| Returns true if and only if a fluid phase is assumed to be compressible. More...
|
|
static bool | isIdealGas (int phaseIdx) |
| Returns true if and only if a fluid phase is assumed to be an ideal gas. More...
|
|
static constexpr int | getMainComponent (int phaseIdx) |
| Get the main component of a given phase if possible. More...
|
|
static std::string | componentName (int compIdx) |
| Return the human readable name of a component. More...
|
|
static Scalar | molarMass (int compIdx) |
| Return the molar mass of a component in \(\mathrm{[kg/mol]}\). More...
|
|
template<class FluidState > |
static Scalar | vaporPressure (const FluidState &fluidState, int compIdx) |
| Vapor pressure of a component \(\mathrm{[Pa]}\). More...
|
|
static void | init () |
| Initialize the fluid system's static parameters generically. More...
|
|
static void | init (Scalar tempMin, Scalar tempMax, unsigned nTemp, Scalar pressMin, Scalar pressMax, unsigned nPress) |
| Initialize the fluid system's static parameters using problem specific temperature and pressure ranges. More...
|
|
template<class FluidState > |
static Scalar | density (const FluidState &fluidState, int phaseIdx) |
| Given a phase's composition, temperature, pressure, and the partial pressures of all components, return its density \(\mathrm{[kg/m^3]}\). More...
|
|
template<class FluidState > |
static Scalar | molarDensity (const FluidState &fluidState, int phaseIdx) |
| Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More...
|
|
template<class FluidState > |
static Scalar | viscosity (const FluidState &fluidState, int phaseIdx) |
| Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More...
|
|
template<class FluidState > |
static Scalar | fugacityCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx) |
| Returns the fugacity coefficient \(\mathrm{[-]}\) of a component in a phase. More...
|
|
template<class FluidState > |
static Scalar | diffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx) |
| Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More...
|
|
template<class FluidState > |
static Scalar | binaryDiffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx) |
| Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More...
|
|
template<class FluidState > |
static Scalar | enthalpy (const FluidState &fluidState, int phaseIdx) |
| Given a phase's composition, temperature and pressure, return its specific enthalpy \(\mathrm{[J/kg]}\). More...
|
|
template<class FluidState > |
static Scalar | componentEnthalpy (const FluidState &fluidState, int phaseIdx, int componentIdx) |
| Returns the specific enthalpy \(\mathrm{[J/kg]}\) of a component in a specific phase. More...
|
|
template<class FluidState > |
static Scalar | thermalConductivity (const FluidState &fluidState, int phaseIdx) |
| Thermal conductivity of a fluid phase \(\mathrm{[W/(m K)]}\). More...
|
|
template<class FluidState > |
static Scalar | heatCapacity (const FluidState &fluidState, int phaseIdx) |
| Specific isobaric heat capacity of a fluid phase. \(\mathrm{[J/(kg*K)}\). More...
|
|
template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar>>, class Policy = BrineAirDefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::BrineAir< Scalar, H2Otype, Policy >::diffusionCoefficient |
( |
const FluidState & |
fluidState, |
|
|
int |
phaseIdx, |
|
|
int |
compIdx |
|
) |
| |
|
inlinestatic |
Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law
\[ J = - D \nabla \mu_\kappa \]
where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation
\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]
where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.
- Parameters
-
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component |
template<class Scalar , class H2Otype = Components::TabulatedComponent<Components::H2O<Scalar>>, class Policy = BrineAirDefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::BrineAir< Scalar, H2Otype, Policy >::fugacityCoefficient |
( |
const FluidState & |
fluidState, |
|
|
int |
phaseIdx, |
|
|
int |
compIdx |
|
) |
| |
|
inlinestatic |
- Parameters
-
fluidState | The fluid state |
phaseIdx | Index of the phase |
compIdx | Index of the component |
The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) of component \(\mathrm{\kappa}\) in phase \(\mathrm{\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation
\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]
where \(\mathrm{p_\alpha}\) is the pressure of the fluid phase.
For liquids with very low miscibility this boils down to the Henry constant for the solutes and the saturated vapor pressure both divided by phase pressure.