Numerical integration in one dimension using the double exponential method of M. Mori.
#include <dumux/common/doubleexpintegrator.hh>
|
template<class Function , typename std::enable_if_t< std::is_invocable_r_v< Scalar, Function, Scalar > > ...> |
static Scalar | integrate (const Function &f, const Scalar a, const Scalar b, const Scalar targetAbsoluteError, int &numFunctionEvaluations, Scalar &errorEstimate) |
| Integrate an analytic function over a finite interval. More...
|
|
template<class Function , typename std::enable_if_t< std::is_invocable_r_v< Scalar, Function, Scalar > > ...> |
static Scalar | integrate (const Function &f, const Scalar a, const Scalar b, const Scalar targetAbsoluteError) |
| Integrate an analytic function over a finite interval. More...
|
|
◆ integrate() [1/2]
template<class Scalar >
template<class Function , typename std::enable_if_t< std::is_invocable_r_v< Scalar, Function, Scalar > > ...>
- Note
- This version overloaded to not require arguments passed in for function evaluation counts or error estimates.
- Parameters
-
f | the integrand (invocable with a single scalar) |
a | lower integral bound |
b | upper integral bound |
targetAbsoluteError | desired absolute error in the result |
- Returns
- The value of the integral.
◆ integrate() [2/2]
template<class Scalar >
template<class Function , typename std::enable_if_t< std::is_invocable_r_v< Scalar, Function, Scalar > > ...>
static Scalar Dumux::DoubleExponentialIntegrator< Scalar >::integrate |
( |
const Function & |
f, |
|
|
const Scalar |
a, |
|
|
const Scalar |
b, |
|
|
const Scalar |
targetAbsoluteError, |
|
|
int & |
numFunctionEvaluations, |
|
|
Scalar & |
errorEstimate |
|
) |
| |
|
inlinestatic |
- Parameters
-
f | the integrand (invocable with a single scalar) |
a | lower limit of integration |
b | upper limit of integration |
targetAbsoluteError | desired bound on error |
numFunctionEvaluations | number of function evaluations used |
errorEstimate | estimate for error in integration |
- Returns
- The value of the integral
The documentation for this class was generated from the following file: