3.6-git
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
Public Types | Static Public Member Functions | Static Public Attributes | List of all members
Dumux::FluidSystems::H2ON2O2< Scalar, Policy > Class Template Reference

A two-phase (water and air) fluid system with water, nitrogen and oxygen as components. More...

#include <dumux/material/fluidsystems/h2on2o2.hh>

Inheritance diagram for Dumux::FluidSystems::H2ON2O2< Scalar, Policy >:

Description

template<class Scalar, class Policy = H2ON2O2DefaultPolicy<>>
class Dumux::FluidSystems::H2ON2O2< Scalar, Policy >

A two-phase (water and air) fluid system with water, nitrogen and oxygen as components.

This fluidsystem uses tabulated version of water of the IAPWS-formulation.

Also remember to initialize tabulated components (FluidSystem::init()), while this is not necessary for non-tabularized ones.

Public Types

using Scalar = Scalar
 export the scalar type More...
 
using ParameterCache = NullParameterCache
 The type of parameter cache objects. More...
 

Static Public Member Functions

static std::string phaseName (int phaseIdx)
 Return the human readable name of a fluid phase. More...
 
static constexpr bool isGas (int phaseIdx)
 Return whether a phase is gaseous. More...
 
static bool isIdealMixture (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to be an ideal mixture. More...
 
static constexpr bool isCompressible (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to be compressible. More...
 
static bool isIdealGas (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to be an ideal gas. More...
 
static constexpr bool isMiscible ()
 Returns whether the fluids are miscible. More...
 
static std::string componentName (int compIdx)
 Return the human readable name of a component. More...
 
static Scalar molarMass (int compIdx)
 Return the molar mass of a component in \(\mathrm{[kg/mol]}\). More...
 
static Scalar criticalTemperature (int compIdx)
 Critical temperature of a component \(\mathrm{[K]}\). More...
 
static Scalar criticalPressure (int compIdx)
 Critical pressure of a component \(\mathrm{[Pa]}\). More...
 
static Scalar criticalMolarVolume (int compIdx)
 Molar volume of a component at the critical point \(\mathrm{[m^3/mol]}\). More...
 
static Scalar acentricFactor (int compIdx)
 The acentric factor of a component \(\mathrm{[-]}\). More...
 
template<class FluidState >
static Scalar kelvinVaporPressure (const FluidState &fluidState, const int phaseIdx, const int compIdx, const Scalar radius)
 Kelvin equation in \(\mathrm{[Pa]}\). More...
 
template<class FluidState >
static Scalar kelvinVaporPressure (const FluidState &fluidState, const int phaseIdx, const int compIdx)
 Vapor pressure including the Kelvin equation in \(\mathrm{[Pa]}\). More...
 
template<class FluidState >
static Scalar surfaceTension (const FluidState &fluidState)
 Calculate the surface tension between water and air in \(\mathrm{[\frac{N}{m}]}\), according to IAPWS Release on Surface Tension from September 1994. The equation is valid between the triple Point (0.01C) and the critical temperature. More...
 
static void init ()
 Initialize the fluid system's static parameters generically. More...
 
static void init (Scalar tempMin, Scalar tempMax, unsigned nTemp, Scalar pressMin, Scalar pressMax, unsigned nPress)
 Initialize the fluid system's static parameters using problem specific temperature and pressure ranges. More...
 
template<class FluidState >
static Scalar density (const FluidState &fluidState, int phaseIdx)
 Given a phase's composition, temperature, pressure, and the partial pressures of all components, return its density \(\mathrm{[kg/m^3]}\). More...
 
template<class FluidState >
static Scalar molarDensity (const FluidState &fluidState, int phaseIdx)
 The molar density \(\rho_{mol,\alpha}\) of a fluid phase \(\alpha\) in \(\mathrm{[mol/m^3]}\). More...
 
template<class FluidState >
static Scalar viscosity (const FluidState &fluidState, int phaseIdx)
 Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More...
 
template<class FluidState >
static Scalar fugacityCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx)
 Returns the fugacity coefficient \(\mathrm{[-]}\) of a component in a phase. More...
 
template<class FluidState >
static Scalar diffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx)
 Calculate the molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More...
 
template<class FluidState >
static Scalar binaryDiffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx)
 Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(i\) and \(j\) in this phase. More...
 
template<class FluidState >
static Scalar enthalpy (const FluidState &fluidState, int phaseIdx)
 Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More...
 
template<class FluidState >
static Scalar componentEnthalpy (const FluidState &fluidState, int phaseIdx, int componentIdx)
 Returns the specific enthalpy \(\mathrm{[J/kg]}\) of a component in a specific phase. More...
 
template<class FluidState >
static Scalar thermalConductivity (const FluidState &fluidState, const int phaseIdx)
 Thermal conductivity of a fluid phase \(\mathrm{[W/(m K)]}\). More...
 
template<class FluidState >
static Scalar heatCapacity (const FluidState &fluidState, int phaseIdx)
 Specific isobaric heat capacity of a fluid phase. \(\mathrm{[J/kg*K]}\). More...
 
template<class FluidState >
static Scalar density (const FluidState &fluidState, int phaseIdx)
 Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase. More...
 
template<class FluidState >
static Scalar density (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase. More...
 
template<class FluidState >
static Scalar molarDensity (const FluidState &fluidState, int phaseIdx)
 Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More...
 
template<class FluidState >
static Scalar molarDensity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More...
 
template<class FluidState >
static Scalar viscosity (const FluidState &fluidState, int phaseIdx)
 Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More...
 
template<class FluidState >
static Scalar viscosity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More...
 
template<class FluidState >
static Scalar fugacityCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx)
 Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase. More...
 
template<class FluidState >
static Scalar fugacityCoefficient (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx, int compIdx)
 Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase. More...
 
template<class FluidState >
static Scalar diffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx)
 Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More...
 
template<class FluidState >
static Scalar diffusionCoefficient (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx, int compIdx)
 Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More...
 
template<class FluidState >
static Scalar binaryDiffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx)
 Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More...
 
template<class FluidState >
static Scalar binaryDiffusionCoefficient (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx, int compIIdx, int compJIdx)
 Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More...
 
template<class FluidState >
static Scalar enthalpy (const FluidState &fluidState, int phaseIdx)
 Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More...
 
template<class FluidState >
static Scalar enthalpy (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More...
 
template<class FluidState >
static Scalar thermalConductivity (const FluidState &fluidState, int phaseIdx)
 Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\). More...
 
template<class FluidState >
static Scalar thermalConductivity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\). More...
 
template<class FluidState >
static Scalar heatCapacity (const FluidState &fluidState, int phaseIdx)
 Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More...
 
template<class FluidState >
static Scalar heatCapacity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More...
 
static constexpr bool isTracerFluidSystem ()
 Some properties of the fluid system. More...
 
static constexpr int getMainComponent (int phaseIdx)
 Get the main component of a given phase if possible. More...
 
static constexpr bool viscosityIsConstant (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to have a constant viscosity. More...
 

Static Public Attributes

static constexpr int numPhases = 2
 Number of phases in the fluid system. More...
 
static constexpr int numComponents = 3
 Number of components in the fluid system. More...
 
static constexpr int numSPhases = 0
 
static constexpr int liquidPhaseIdx = 0
 index of the liquid phase More...
 
static constexpr int gasPhaseIdx = 1
 index of the gas phase More...
 
static constexpr int phase0Idx = liquidPhaseIdx
 index of the first phase More...
 
static constexpr int phase1Idx = gasPhaseIdx
 index of the second phase More...
 
static constexpr int H2OIdx = 0
 
static constexpr int N2Idx = 1
 
static constexpr int O2Idx = 2
 
static constexpr int comp0Idx = H2OIdx
 
static constexpr int comp1Idx = N2Idx
 
static constexpr int comp2Idx = O2Idx
 
static constexpr int liquidPhaseMainCompIdx = H2OIdx
 
static constexpr int gasPhaseMainCompIdx = N2Idx
 

Member Typedef Documentation

◆ ParameterCache

The type of parameter cache objects.

◆ Scalar

export the scalar type

Member Function Documentation

◆ acentricFactor()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::acentricFactor ( int  compIdx)
inlinestatic

The acentric factor of a component \(\mathrm{[-]}\).

Parameters
compIdxThe index of the component to consider

◆ binaryDiffusionCoefficient() [1/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::binaryDiffusionCoefficient ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx,
int  compIIdx,
int  compJIdx 
)
inlinestatic

Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase.

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase
compIIdxIndex of the component i
compJIdxIndex of the component j

◆ binaryDiffusionCoefficient() [2/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::binaryDiffusionCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIIdx,
int  compJIdx 
)
inlinestatic

Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase.

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase
compIIdxIndex of the component i
compJIdxIndex of the component j

◆ binaryDiffusionCoefficient() [3/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::binaryDiffusionCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIIdx,
int  compJIdx 
)
inlinestatic

Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(i\) and \(j\) in this phase.

Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider
compIIdxThe index of the first component to consider
compJIdxThe index of the second component to consider

◆ componentEnthalpy()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::componentEnthalpy ( const FluidState &  fluidState,
int  phaseIdx,
int  componentIdx 
)
inlinestatic

Returns the specific enthalpy \(\mathrm{[J/kg]}\) of a component in a specific phase.

◆ componentName()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static std::string Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::componentName ( int  compIdx)
inlinestatic

Return the human readable name of a component.

Parameters
compIdxThe index of the component to consider

◆ criticalMolarVolume()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::criticalMolarVolume ( int  compIdx)
inlinestatic

Molar volume of a component at the critical point \(\mathrm{[m^3/mol]}\).

Parameters
compIdxThe index of the component to consider

◆ criticalPressure()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::criticalPressure ( int  compIdx)
inlinestatic

Critical pressure of a component \(\mathrm{[Pa]}\).

Parameters
compIdxThe index of the component to consider

◆ criticalTemperature()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::criticalTemperature ( int  compIdx)
inlinestatic

Critical temperature of a component \(\mathrm{[K]}\).

Parameters
compIdxThe index of the component to consider

◆ density() [1/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::density ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase.

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ density() [2/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::density ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase.

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase

◆ density() [3/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::density ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Given a phase's composition, temperature, pressure, and the partial pressures of all components, return its density \(\mathrm{[kg/m^3]}\).

If Policy::useH2ODensityAsLiquidMixtureDensity() == false, we apply Eq. (7) in Class et al. (2002a) [14]
for the liquid density.

Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider

◆ diffusionCoefficient() [1/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::diffusionCoefficient ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\).

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase
compIdxIndex of the component Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law

\[ J = - D \mathbf{grad} \mu_\kappa \]

where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation

\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]

where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.

◆ diffusionCoefficient() [2/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::diffusionCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\).

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase
compIdxIndex of the component Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law

\[ J = - D \mathbf{grad} \mu_\kappa \]

where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation

\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]

where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.

◆ diffusionCoefficient() [3/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::diffusionCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Calculate the molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\).

Molecular diffusion of a component \(\kappa\) is caused by a gradient of the chemical potential and follows the law

\[ J = - D \mathbf{grad} \mu_\kappa \]

where \(\mu_\kappa\) is the component's chemical potential, \(D\) is the diffusion coefficient and \(J\) is the diffusive flux. \(mu_\kappa\) is connected to the component's fugacity \(f_\kappa\) by the relation

\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]

where \(p_\alpha\) and \(T_\alpha\) are the fluid phase' pressure and temperature.

Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider
compIdxThe index of the component to consider

◆ enthalpy() [1/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::enthalpy ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\).

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ enthalpy() [2/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::enthalpy ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\).

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase

◆ enthalpy() [3/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::enthalpy ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\).

Note
This fluid system neglects the contribution of gas-molecules in the liquid phase. This contribution is probably not big. Somebody would have to find out the enthalpy of solution for this system. ...
Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider

◆ fugacityCoefficient() [1/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::fugacityCoefficient ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase.

The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation

\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase
compIdxIndex of the component

◆ fugacityCoefficient() [2/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::fugacityCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase.

The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation

\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase
compIdxIndex of the component

◆ fugacityCoefficient() [3/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::fugacityCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Returns the fugacity coefficient \(\mathrm{[-]}\) of a component in a phase.

The fugacity coefficient \(\phi^\kappa_\alpha\) of component \(\kappa\) in phase \(\alpha\) is connected to the fugacity \(f^\kappa_\alpha\) and the component's mole fraction \(x^\kappa_\alpha\) by means of the relation

\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]

where \(p_\alpha\) is the pressure of the fluid phase.

For liquids with very low miscibility this boils down to the Henry constant for the solutes and the saturated vapor pressure both divided by phase pressure.

◆ getMainComponent()

static constexpr int Dumux::FluidSystems::Base< Scalar , H2ON2O2< Scalar, H2ON2O2DefaultPolicy<> > >::getMainComponent ( int  phaseIdx)
inlinestaticconstexprinherited

Get the main component of a given phase if possible.

Parameters
phaseIdxThe index of the fluid phase to consider
Todo:
Unfortunately we currently still have the assumption in some volume variables (e.g. 1pnc, 2pnc) that the main component index of a phase is equal to the phase index of that phase. This means changing this only works if the volume variables are written accordingly.
Note
This only makes sense if this is not a tracer fluid system (then the bulk component is not balanced)

◆ heatCapacity() [1/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::heatCapacity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\).

Parameters
fluidStaterepresents all relevant thermodynamic quantities of a fluid system
paramCachemutable parameters
phaseIdxIndex of the fluid phase

Given a fluid state, an up-to-date parameter cache and a phase index, this method computes the isobaric heat capacity \(c_{p,\alpha}\) of the fluid phase. The isobaric heat capacity is defined as the partial derivative of the specific enthalpy \(h_\alpha\) to the fluid pressure \(p_\alpha\):

\( c_{p,\alpha} = \frac{\partial h_\alpha}{\partial p_\alpha} \)

◆ heatCapacity() [2/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::heatCapacity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\).

Parameters
fluidStaterepresents all relevant thermodynamic quantities of a fluid system
phaseIdxIndex of the fluid phase

Given a fluid state, an up-to-date parameter cache and a phase index, this method computes the isobaric heat capacity \(c_{p,\alpha}\) of the fluid phase. The isobaric heat capacity is defined as the partial derivative of the specific enthalpy \(h_\alpha\) to the fluid pressure \(p_\alpha\):

\( c_{p,\alpha} = \frac{\partial h_\alpha}{\partial p_\alpha} \)

◆ heatCapacity() [3/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::heatCapacity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Specific isobaric heat capacity of a fluid phase. \(\mathrm{[J/kg*K]}\).

Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider

◆ init() [1/2]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static void Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::init ( )
inlinestatic

Initialize the fluid system's static parameters generically.

If a tabulated H2O component is used, we do our best to create tables that always work.

◆ init() [2/2]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static void Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::init ( Scalar  tempMin,
Scalar  tempMax,
unsigned  nTemp,
Scalar  pressMin,
Scalar  pressMax,
unsigned  nPress 
)
inlinestatic

Initialize the fluid system's static parameters using problem specific temperature and pressure ranges.

Parameters
tempMinThe minimum temperature used for tabulation of water \(\mathrm{[K]}\)
tempMaxThe maximum temperature used for tabulation of water \(\mathrm{[K]}\)
nTempThe number of ticks on the temperature axis of the table of water
pressMinThe minimum pressure used for tabulation of water \(\mathrm{[Pa]}\)
pressMaxThe maximum pressure used for tabulation of water \(\mathrm{[Pa]}\)
nPressThe number of ticks on the pressure axis of the table of water

◆ isCompressible()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static constexpr bool Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::isCompressible ( int  phaseIdx)
inlinestaticconstexpr

Returns true if and only if a fluid phase is assumed to be compressible.

Compressible means that the partial derivative of the density to the fluid pressure is always larger than zero.

Parameters
phaseIdxThe index of the fluid phase to consider

◆ isGas()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static constexpr bool Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::isGas ( int  phaseIdx)
inlinestaticconstexpr

Return whether a phase is gaseous.

Parameters
phaseIdxThe index of the fluid phase to consider

◆ isIdealGas()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static bool Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::isIdealGas ( int  phaseIdx)
inlinestatic

Returns true if and only if a fluid phase is assumed to be an ideal gas.

Parameters
phaseIdxThe index of the fluid phase to consider

◆ isIdealMixture()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static bool Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::isIdealMixture ( int  phaseIdx)
inlinestatic

Returns true if and only if a fluid phase is assumed to be an ideal mixture.

We define an ideal mixture as a fluid phase where the fugacity coefficients of all components times the pressure of the phase are independent on the fluid composition. This assumption is true if Henry's law and Raoult's law apply. If you are unsure what this function should return, it is safe to return false. The only damage done will be (slightly) increased computation times in some cases.

Parameters
phaseIdxThe index of the fluid phase to consider

◆ isMiscible()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static constexpr bool Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::isMiscible ( )
inlinestaticconstexpr

Returns whether the fluids are miscible.

◆ isTracerFluidSystem()

static constexpr bool Dumux::FluidSystems::Base< Scalar , H2ON2O2< Scalar, H2ON2O2DefaultPolicy<> > >::isTracerFluidSystem ( )
inlinestaticconstexprinherited

Some properties of the fluid system.

If the fluid system only contains tracer components

◆ kelvinVaporPressure() [1/2]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::kelvinVaporPressure ( const FluidState &  fluidState,
const int  phaseIdx,
const int  compIdx 
)
inlinestatic

Vapor pressure including the Kelvin equation in \(\mathrm{[Pa]}\).

Calculate the decreased vapor pressure due to capillarity

Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider
compIdxThe index of the component to consider

◆ kelvinVaporPressure() [2/2]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::kelvinVaporPressure ( const FluidState &  fluidState,
const int  phaseIdx,
const int  compIdx,
const Scalar  radius 
)
inlinestatic

Kelvin equation in \(\mathrm{[Pa]}\).

Calculate the increase vapor pressure over the curved surface of a drop with radius r

Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider
compIdxThe index of the component to consider
radiusThe radius of the drop

◆ molarDensity() [1/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::molarDensity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase.

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ molarDensity() [2/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::molarDensity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase.

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase

◆ molarDensity() [3/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::molarDensity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

The molar density \(\rho_{mol,\alpha}\) of a fluid phase \(\alpha\) in \(\mathrm{[mol/m^3]}\).

The molar density for the simple relation is defined by the mass density \(\rho_\alpha\) and the molar mass of the main component

The molar density for the complrex relation is defined by the mass density \(\rho_\alpha\) and the mean molar mass \(\overline M_\alpha\):

\[\rho_{mol,\alpha} = \frac{\rho_\alpha}{\overline M_\alpha} \;.\]

◆ molarMass()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::molarMass ( int  compIdx)
inlinestatic

Return the molar mass of a component in \(\mathrm{[kg/mol]}\).

Parameters
compIdxThe index of the component to consider

◆ phaseName()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
static std::string Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::phaseName ( int  phaseIdx)
inlinestatic

Return the human readable name of a fluid phase.

Parameters
phaseIdxThe index of the fluid phase to consider

◆ surfaceTension()

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::surfaceTension ( const FluidState &  fluidState)
inlinestatic

Calculate the surface tension between water and air in \(\mathrm{[\frac{N}{m}]}\), according to IAPWS Release on Surface Tension from September 1994. The equation is valid between the triple Point (0.01C) and the critical temperature.

Parameters
fluidStateAn arbitrary fluid state

◆ thermalConductivity() [1/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::thermalConductivity ( const FluidState &  fluidState,
const int  phaseIdx 
)
inlinestatic

Thermal conductivity of a fluid phase \(\mathrm{[W/(m K)]}\).

Use the conductivity of air and water as a first approximation.

http://en.wikipedia.org/wiki/List_of_thermal_conductivities

Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider

◆ thermalConductivity() [2/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::thermalConductivity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\).

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ thermalConductivity() [3/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::thermalConductivity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\).

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase

◆ viscosity() [1/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::viscosity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\).

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ viscosity() [2/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::viscosity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\).

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase

◆ viscosity() [3/3]

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::viscosity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\).

Compositional effects in the gas phase are accounted by the Wilke method. See Reid et al. (1987) [61]
4th edition, McGraw-Hill, 1987, 407-410 5th edition, McGraw-Hill, 20001, p. 9.21/22

Note
Compositional effects for a liquid mixture have to be implemented.
Parameters
fluidStateAn arbitrary fluid state
phaseIdxThe index of the fluid phase to consider

◆ viscosityIsConstant()

static constexpr bool Dumux::FluidSystems::Base< Scalar , H2ON2O2< Scalar, H2ON2O2DefaultPolicy<> > >::viscosityIsConstant ( int  phaseIdx)
inlinestaticconstexprinherited

Returns true if and only if a fluid phase is assumed to have a constant viscosity.

Parameters
phaseIdxThe index of the fluid phase to consider

Member Data Documentation

◆ comp0Idx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::comp0Idx = H2OIdx
staticconstexpr

◆ comp1Idx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::comp1Idx = N2Idx
staticconstexpr

◆ comp2Idx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::comp2Idx = O2Idx
staticconstexpr

◆ gasPhaseIdx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::gasPhaseIdx = 1
staticconstexpr

index of the gas phase

◆ gasPhaseMainCompIdx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::gasPhaseMainCompIdx = N2Idx
staticconstexpr

◆ H2OIdx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::H2OIdx = 0
staticconstexpr

◆ liquidPhaseIdx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::liquidPhaseIdx = 0
staticconstexpr

index of the liquid phase

◆ liquidPhaseMainCompIdx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::liquidPhaseMainCompIdx = H2OIdx
staticconstexpr

◆ N2Idx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::N2Idx = 1
staticconstexpr

◆ numComponents

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::numComponents = 3
staticconstexpr

Number of components in the fluid system.

◆ numPhases

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::numPhases = 2
staticconstexpr

Number of phases in the fluid system.

◆ numSPhases

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::numSPhases = 0
staticconstexpr

◆ O2Idx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::O2Idx = 2
staticconstexpr

◆ phase0Idx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::phase0Idx = liquidPhaseIdx
staticconstexpr

index of the first phase

◆ phase1Idx

template<class Scalar , class Policy = H2ON2O2DefaultPolicy<>>
constexpr int Dumux::FluidSystems::H2ON2O2< Scalar, Policy >::phase1Idx = gasPhaseIdx
staticconstexpr

index of the second phase


The documentation for this class was generated from the following file: