3.6-git
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
Public Types | Static Public Member Functions | Static Public Attributes | List of all members
Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType > Class Template Reference

A three-phase fluid system featuring gas, NAPL and water as phases and distilled water \((\mathrm{H_2O})\) and air (Pseudo component composed of \(\mathrm{79\%\;N_2}\), \(\mathrm{20\%\;O_2}\) and Mesitylene \((\mathrm{C_6H_3(CH_3)_3})\) as components. More...

#include <dumux/material/fluidsystems/h2oairmesitylene.hh>

Inheritance diagram for Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >:

Description

template<class Scalar, class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
class Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >

A three-phase fluid system featuring gas, NAPL and water as phases and distilled water \((\mathrm{H_2O})\) and air (Pseudo component composed of \(\mathrm{79\%\;N_2}\), \(\mathrm{20\%\;O_2}\) and Mesitylene \((\mathrm{C_6H_3(CH_3)_3})\) as components.

It assumes all phases to be ideal mixtures.

Public Types

using NAPL = Components::Mesitylene< Scalar >
 
using Air = Dumux::Components::Air< Scalar >
 
using H2O = H2OType
 
using Scalar = Scalar
 export the scalar type More...
 
using ParameterCache = NullParameterCache
 The type of parameter cache objects. More...
 

Static Public Member Functions

static void init ()
 Initialize the fluid system's static parameters generically. More...
 
static void init (Scalar tempMin, Scalar tempMax, unsigned nTemp, Scalar pressMin, Scalar pressMax, unsigned nPress)
 Initialize the fluid system's static parameters using problem specific temperature and pressure ranges. More...
 
static constexpr bool isMiscible ()
 Returns whether the fluids are miscible. More...
 
static constexpr bool isGas (int phaseIdx)
 Return whether a phase is gaseous. More...
 
static bool isIdealGas (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to be an ideal gas. More...
 
static bool isIdealMixture (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to be an ideal mixture. More...
 
static constexpr bool isCompressible (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to be compressible. More...
 
static std::string phaseName (int phaseIdx)
 Return the human readable name of a phase (used in indices) More...
 
static std::string componentName (int compIdx)
 Return the human readable name of a component (used in indices) More...
 
static Scalar molarMass (int compIdx)
 Return the molar mass of a component in \(\mathrm{[kg/mol]}\). More...
 
template<class FluidState >
static Scalar density (const FluidState &fluidState, int phaseIdx)
 Given a phase's composition, temperature, pressure, and the partial pressures of all components, return its density \(\mathrm{[kg/m^3]}\). More...
 
template<class FluidState >
static Scalar molarDensity (const FluidState &fluidState, int phaseIdx)
 The molar density \(\rho_{mol,\alpha}\) of a fluid phase \(\alpha\) in \(\mathrm{[mol/m^3]}\). More...
 
template<class FluidState >
static Scalar viscosity (const FluidState &fluidState, int phaseIdx)
 Return the viscosity of a phase \(\mathrm{[Pa s]}\). More...
 
template<class FluidState >
static Scalar diffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx)
 Given all mole fractions, return the diffusion coefficient in \(\mathrm{[m^2/s]}\) of a component in a phase. More...
 
template<class FluidState >
static Scalar binaryDiffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx)
 
template<class FluidState >
static Scalar fugacityCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx)
 Returns the fugacity coefficient \(\mathrm{[-]}\) of a component in a phase. More...
 
template<class FluidState >
static Scalar kelvinVaporPressure (const FluidState &fluidState, const int phaseIdx, const int compIdx)
 
template<class FluidState >
static Scalar enthalpy (const FluidState &fluidState, int phaseIdx)
 Given all mole fractions in a phase, return the specific phase enthalpy \(\mathrm{[J/kg]}\). More...
 
template<class FluidState >
static Scalar componentEnthalpy (const FluidState &fluidState, int phaseIdx, int componentIdx)
 Returns the specific enthalpy \(\mathrm{[J/kg]}\) of a component in a specific phase. More...
 
template<class FluidState >
static Scalar heatCapacity (const FluidState &fluidState, int phaseIdx)
 Return the heat capacity in \(\mathrm{[J/(kg K)]}\). More...
 
template<class FluidState >
static Scalar thermalConductivity (const FluidState &fluidState, int phaseIdx)
 Return the thermal conductivity \(\mathrm{[W/(m K)]}\). More...
 
template<class FluidState >
static Scalar density (const FluidState &fluidState, int phaseIdx)
 Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase. More...
 
template<class FluidState >
static Scalar density (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase. More...
 
template<class FluidState >
static Scalar molarDensity (const FluidState &fluidState, int phaseIdx)
 Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More...
 
template<class FluidState >
static Scalar molarDensity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More...
 
template<class FluidState >
static Scalar viscosity (const FluidState &fluidState, int phaseIdx)
 Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More...
 
template<class FluidState >
static Scalar viscosity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More...
 
template<class FluidState >
static Scalar diffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx)
 Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More...
 
template<class FluidState >
static Scalar diffusionCoefficient (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx, int compIdx)
 Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More...
 
template<class FluidState >
static Scalar binaryDiffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx)
 Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More...
 
template<class FluidState >
static Scalar binaryDiffusionCoefficient (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx, int compIIdx, int compJIdx)
 Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More...
 
template<class FluidState >
static Scalar fugacityCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx)
 Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase. More...
 
template<class FluidState >
static Scalar fugacityCoefficient (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx, int compIdx)
 Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase. More...
 
template<class FluidState >
static Scalar enthalpy (const FluidState &fluidState, int phaseIdx)
 Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More...
 
template<class FluidState >
static Scalar enthalpy (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More...
 
template<class FluidState >
static Scalar heatCapacity (const FluidState &fluidState, int phaseIdx)
 Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More...
 
template<class FluidState >
static Scalar heatCapacity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More...
 
template<class FluidState >
static Scalar thermalConductivity (const FluidState &fluidState, int phaseIdx)
 Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\). More...
 
template<class FluidState >
static Scalar thermalConductivity (const FluidState &fluidState, const ParameterCache &paramCache, int phaseIdx)
 Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\). More...
 
static constexpr bool isTracerFluidSystem ()
 Some properties of the fluid system. More...
 
static constexpr int getMainComponent (int phaseIdx)
 Get the main component of a given phase if possible. More...
 
static constexpr bool viscosityIsConstant (int phaseIdx)
 Returns true if and only if a fluid phase is assumed to have a constant viscosity. More...
 

Static Public Attributes

static const int numPhases = 3
 
static const int numComponents = 3
 
static const int wPhaseIdx = 0
 
static const int nPhaseIdx = 1
 
static const int gPhaseIdx = 2
 
static const int H2OIdx = 0
 
static const int NAPLIdx = 1
 
static const int AirIdx = 2
 
static const int wCompIdx = H2OIdx
 
static const int nCompIdx = NAPLIdx
 
static const int gCompIdx = AirIdx
 

Member Typedef Documentation

◆ Air

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
using Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::Air = Dumux::Components::Air<Scalar>

◆ H2O

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
using Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::H2O = H2OType

◆ NAPL

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
using Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::NAPL = Components::Mesitylene<Scalar>

◆ ParameterCache

The type of parameter cache objects.

◆ Scalar

export the scalar type

Member Function Documentation

◆ binaryDiffusionCoefficient() [1/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::binaryDiffusionCoefficient ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx,
int  compIIdx,
int  compJIdx 
)
inlinestatic

Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase.

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase
compIIdxIndex of the component i
compJIdxIndex of the component j

◆ binaryDiffusionCoefficient() [2/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::binaryDiffusionCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIIdx,
int  compJIdx 
)
inlinestatic

Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase.

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase
compIIdxIndex of the component i
compJIdxIndex of the component j

◆ binaryDiffusionCoefficient() [3/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::binaryDiffusionCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIIdx,
int  compJIdx 
)
inlinestatic

◆ componentEnthalpy()

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::componentEnthalpy ( const FluidState &  fluidState,
int  phaseIdx,
int  componentIdx 
)
inlinestatic

Returns the specific enthalpy \(\mathrm{[J/kg]}\) of a component in a specific phase.

Parameters
fluidStateThe fluid state
phaseIdxThe index of the phase
componentIdxThe index of the component

◆ componentName()

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
static std::string Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::componentName ( int  compIdx)
inlinestatic

Return the human readable name of a component (used in indices)

◆ density() [1/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::density ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase.

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ density() [2/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::density ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase.

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase

◆ density() [3/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::density ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Given a phase's composition, temperature, pressure, and the partial pressures of all components, return its density \(\mathrm{[kg/m^3]}\).

We apply Eq. (7) in Class et al. (2002a) [14]
for the water density.

Parameters
fluidStateThe fluid state
phaseIdxThe index of the phase

◆ diffusionCoefficient() [1/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::diffusionCoefficient ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\).

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase
compIdxIndex of the component Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law

\[ J = - D \mathbf{grad} \mu_\kappa \]

where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation

\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]

where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.

◆ diffusionCoefficient() [2/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::diffusionCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\).

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase
compIdxIndex of the component Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law

\[ J = - D \mathbf{grad} \mu_\kappa \]

where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation

\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]

where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.

◆ diffusionCoefficient() [3/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::diffusionCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Given all mole fractions, return the diffusion coefficient in \(\mathrm{[m^2/s]}\) of a component in a phase.

Parameters
fluidStateThe fluid state
phaseIdxThe index of the phase
compIdxThe index of the component

◆ enthalpy() [1/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::enthalpy ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\).

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ enthalpy() [2/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::enthalpy ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\).

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase

◆ enthalpy() [3/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::enthalpy ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Given all mole fractions in a phase, return the specific phase enthalpy \(\mathrm{[J/kg]}\).

Parameters
fluidStateThe fluid state
phaseIdxThe index of the phase
Note
This system neglects the contribution of gas-molecules in the liquid phase. This contribution is probably not big. Somebody would have to find out the enthalpy of solution for this system. ...

◆ fugacityCoefficient() [1/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::fugacityCoefficient ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase.

The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation

\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase
compIdxIndex of the component

◆ fugacityCoefficient() [2/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::fugacityCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase.

The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation

\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase
compIdxIndex of the component

◆ fugacityCoefficient() [3/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::fugacityCoefficient ( const FluidState &  fluidState,
int  phaseIdx,
int  compIdx 
)
inlinestatic

Returns the fugacity coefficient \(\mathrm{[-]}\) of a component in a phase.

In this case, things are actually pretty simple. We have an ideal solution. Thus, the fugacity coefficient is 1 in the gas phase (fugacity equals the partial pressure of the component in the gas phase) respectively in the liquid phases it is the Henry coefficients divided by pressure.

Parameters
fluidStateThe fluid state
phaseIdxThe index of the phase
compIdxThe index of the component

◆ getMainComponent()

static constexpr int Dumux::FluidSystems::Base< Scalar , H2OAirMesitylene< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > > > >::getMainComponent ( int  phaseIdx)
inlinestaticconstexprinherited

Get the main component of a given phase if possible.

Parameters
phaseIdxThe index of the fluid phase to consider
Todo:
Unfortunately we currently still have the assumption in some volume variables (e.g. 1pnc, 2pnc) that the main component index of a phase is equal to the phase index of that phase. This means changing this only works if the volume variables are written accordingly.
Note
This only makes sense if this is not a tracer fluid system (then the bulk component is not balanced)

◆ heatCapacity() [1/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::heatCapacity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\).

Parameters
fluidStaterepresents all relevant thermodynamic quantities of a fluid system
paramCachemutable parameters
phaseIdxIndex of the fluid phase

Given a fluid state, an up-to-date parameter cache and a phase index, this method computes the isobaric heat capacity \(c_{p,\alpha}\) of the fluid phase. The isobaric heat capacity is defined as the partial derivative of the specific enthalpy \(h_\alpha\) to the fluid pressure \(p_\alpha\):

\( c_{p,\alpha} = \frac{\partial h_\alpha}{\partial p_\alpha} \)

◆ heatCapacity() [2/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::heatCapacity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\).

Parameters
fluidStaterepresents all relevant thermodynamic quantities of a fluid system
phaseIdxIndex of the fluid phase

Given a fluid state, an up-to-date parameter cache and a phase index, this method computes the isobaric heat capacity \(c_{p,\alpha}\) of the fluid phase. The isobaric heat capacity is defined as the partial derivative of the specific enthalpy \(h_\alpha\) to the fluid pressure \(p_\alpha\):

\( c_{p,\alpha} = \frac{\partial h_\alpha}{\partial p_\alpha} \)

◆ heatCapacity() [3/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::heatCapacity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Return the heat capacity in \(\mathrm{[J/(kg K)]}\).

Parameters
fluidStateThe fluid state
phaseIdxThe index of the phase

◆ init() [1/2]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
static void Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::init ( )
inlinestatic

Initialize the fluid system's static parameters generically.

If a tabulated H2O component is used, we do our best to create tables that always work.

◆ init() [2/2]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
static void Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::init ( Scalar  tempMin,
Scalar  tempMax,
unsigned  nTemp,
Scalar  pressMin,
Scalar  pressMax,
unsigned  nPress 
)
inlinestatic

Initialize the fluid system's static parameters using problem specific temperature and pressure ranges.

Parameters
tempMinThe minimum temperature used for tabulation of water \(\mathrm{[K]}\)
tempMaxThe maximum temperature used for tabulation of water \(\mathrm{[K]}\)
nTempThe number of ticks on the temperature axis of the table of water
pressMinThe minimum pressure used for tabulation of water \(\mathrm{[Pa]}\)
pressMaxThe maximum pressure used for tabulation of water \(\mathrm{[Pa]}\)
nPressThe number of ticks on the pressure axis of the table of water

◆ isCompressible()

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
static constexpr bool Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::isCompressible ( int  phaseIdx)
inlinestaticconstexpr

Returns true if and only if a fluid phase is assumed to be compressible.

Compressible means that the partial derivative of the density to the fluid pressure is always larger than zero.

Parameters
phaseIdxThe index of the fluid phase to consider

◆ isGas()

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
static constexpr bool Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::isGas ( int  phaseIdx)
inlinestaticconstexpr

Return whether a phase is gaseous.

Parameters
phaseIdxThe index of the fluid phase to consider

◆ isIdealGas()

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
static bool Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::isIdealGas ( int  phaseIdx)
inlinestatic

Returns true if and only if a fluid phase is assumed to be an ideal gas.

Parameters
phaseIdxThe index of the fluid phase to consider

◆ isIdealMixture()

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
static bool Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::isIdealMixture ( int  phaseIdx)
inlinestatic

Returns true if and only if a fluid phase is assumed to be an ideal mixture.

We define an ideal mixture as a fluid phase where the fugacity coefficients of all components times the pressure of the phase are independent on the fluid composition. This assumption is true if Henry's law and Raoult's law apply. If you are unsure what this function should return, it is safe to return false. The only damage done will be (slightly) increased computation times in some cases.

Parameters
phaseIdxThe index of the fluid phase to consider

◆ isMiscible()

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
static constexpr bool Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::isMiscible ( )
inlinestaticconstexpr

Returns whether the fluids are miscible.

◆ isTracerFluidSystem()

static constexpr bool Dumux::FluidSystems::Base< Scalar , H2OAirMesitylene< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > > > >::isTracerFluidSystem ( )
inlinestaticconstexprinherited

Some properties of the fluid system.

If the fluid system only contains tracer components

◆ kelvinVaporPressure()

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::kelvinVaporPressure ( const FluidState &  fluidState,
const int  phaseIdx,
const int  compIdx 
)
inlinestatic

◆ molarDensity() [1/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::molarDensity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase.

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ molarDensity() [2/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::molarDensity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase.

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase

◆ molarDensity() [3/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::molarDensity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

The molar density \(\rho_{mol,\alpha}\) of a fluid phase \(\alpha\) in \(\mathrm{[mol/m^3]}\).

The molar density is defined by the mass density \(\rho_\alpha\) and the mean molar mass \(\overline M_\alpha\):

\[\rho_{mol,\alpha} = \frac{\rho_\alpha}{\overline M_\alpha} \;.\]

◆ molarMass()

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::molarMass ( int  compIdx)
inlinestatic

Return the molar mass of a component in \(\mathrm{[kg/mol]}\).

Parameters
compIdxThe index of the component

◆ phaseName()

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
static std::string Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::phaseName ( int  phaseIdx)
inlinestatic

Return the human readable name of a phase (used in indices)

◆ thermalConductivity() [1/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::thermalConductivity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\).

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ thermalConductivity() [2/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::thermalConductivity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\).

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase

◆ thermalConductivity() [3/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::thermalConductivity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Return the thermal conductivity \(\mathrm{[W/(m K)]}\).

Parameters
fluidStateThe fluid state
phaseIdxThe index of the phase

◆ viscosity() [1/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::viscosity ( const FluidState &  fluidState,
const ParameterCache paramCache,
int  phaseIdx 
)
inlinestatic

Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\).

Parameters
fluidStateThe fluid state
paramCachemutable parameters
phaseIdxIndex of the fluid phase

◆ viscosity() [2/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::Base< ScalarType, Implementation >::viscosity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\).

Parameters
fluidStateThe fluid state
phaseIdxIndex of the fluid phase

◆ viscosity() [3/3]

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
template<class FluidState >
static Scalar Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::viscosity ( const FluidState &  fluidState,
int  phaseIdx 
)
inlinestatic

Return the viscosity of a phase \(\mathrm{[Pa s]}\).

Parameters
fluidStateThe fluid state
phaseIdxThe index of the phase
Todo:
Check the parameter phiCAW for the mesitylene case and give a physical meaningful name

◆ viscosityIsConstant()

static constexpr bool Dumux::FluidSystems::Base< Scalar , H2OAirMesitylene< Scalar, Components::TabulatedComponent< Components::H2O< Scalar > > > >::viscosityIsConstant ( int  phaseIdx)
inlinestaticconstexprinherited

Returns true if and only if a fluid phase is assumed to have a constant viscosity.

Parameters
phaseIdxThe index of the fluid phase to consider

Member Data Documentation

◆ AirIdx

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
const int Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::AirIdx = 2
static

◆ gCompIdx

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
const int Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::gCompIdx = AirIdx
static

◆ gPhaseIdx

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
const int Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::gPhaseIdx = 2
static

◆ H2OIdx

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
const int Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::H2OIdx = 0
static

◆ NAPLIdx

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
const int Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::NAPLIdx = 1
static

◆ nCompIdx

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
const int Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::nCompIdx = NAPLIdx
static

◆ nPhaseIdx

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
const int Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::nPhaseIdx = 1
static

◆ numComponents

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
const int Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::numComponents = 3
static

◆ numPhases

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
const int Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::numPhases = 3
static

◆ wCompIdx

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
const int Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::wCompIdx = H2OIdx
static

◆ wPhaseIdx

template<class Scalar , class H2OType = Components::TabulatedComponent<Components::H2O<Scalar> >>
const int Dumux::FluidSystems::H2OAirMesitylene< Scalar, H2OType >::wPhaseIdx = 0
static

The documentation for this class was generated from the following file: