A compositional fluid with brine (H2O & NaCl) and carbon dioxide as components in both the liquid and the gas (supercritical) phase. More...
#include <dumux/material/fluidsystems/brineco2.hh>
A compositional fluid with brine (H2O & NaCl) and carbon dioxide as components in both the liquid and the gas (supercritical) phase.
Public Types | |
using | ParameterCache = NullParameterCache |
using | H2O = H2OType |
using | Brine = BrineType |
using | CO2 = Dumux::Components::CO2< Scalar, CO2Table > |
Static Public Member Functions | |
static std::string | phaseName (int phaseIdx) |
Return the human readable name of a fluid phase. More... | |
static constexpr bool | isMiscible () |
Returns whether the fluids are miscible. More... | |
static constexpr bool | isGas (int phaseIdx) |
Return whether a phase is gaseous. More... | |
static constexpr bool | isIdealGas (int phaseIdx) |
Returns true if and only if a fluid phase is assumed to be an ideal gas. More... | |
static bool | isIdealMixture (int phaseIdx) |
Returns true if and only if a fluid phase is assumed to be an ideal mixture. More... | |
static constexpr bool | isCompressible (int phaseIdx) |
Returns true if and only if a fluid phase is assumed to be compressible. More... | |
static std::string | componentName (int compIdx) |
Return the human readable name of a component. More... | |
static Scalar | molarMass (int compIdx) |
Return the molar mass of a component in \(\mathrm{[kg/mol]}\). More... | |
static void | init () |
static void | init (Scalar startTemp, Scalar endTemp, int tempSteps, Scalar startPressure, Scalar endPressure, int pressureSteps) |
template<class FluidState > | |
static Scalar | density (const FluidState &fluidState, int phaseIdx) |
Given a phase's composition, temperature, pressure, and the partial pressures of all components, return its density \(\mathrm{[kg/m^3]}\). More... | |
template<class FluidState > | |
static Scalar | molarDensity (const FluidState &fluidState, int phaseIdx) |
The molar density \(\rho_{mol,\alpha}\) of a fluid phase \(\alpha\) in \(\mathrm{[mol/m^3]}\). More... | |
template<class FluidState > | |
static Scalar | viscosity (const FluidState &fluidState, int phaseIdx) |
Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More... | |
template<class FluidState > | |
static Scalar | fugacityCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx) |
Returns the fugacity coefficient \(\mathrm{[-]}\) of a component in a phase. More... | |
template<class FluidState > | |
static Scalar | equilibriumMoleFraction (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Returns the equilibrium concentration of the dissolved component in a phase. More... | |
template<class FluidState > | |
static Scalar | diffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx) |
Calculate the molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More... | |
template<class FluidState > | |
static Scalar | binaryDiffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx) |
Given the phase compositions, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) of two components in a phase. More... | |
template<class FluidState > | |
static Scalar | enthalpy (const FluidState &fluidState, int phaseIdx) |
Given the phase composition, return the specific phase enthalpy \(\mathrm{[J/kg]}\). More... | |
template<class FluidState > | |
static Scalar | componentEnthalpy (const FluidState &fluidState, int phaseIdx, int componentIdx) |
Returns the specific enthalpy \(\mathrm{[J/kg]}\) of a component in a specific phase. More... | |
template<class FluidState > | |
static Scalar | thermalConductivity (const FluidState &fluidState, int phaseIdx) |
Thermal conductivity of a fluid phase \(\mathrm{[W/(m K)]}\). More... | |
template<class FluidState > | |
static Scalar | heatCapacity (const FluidState &fluidState, int phaseIdx) |
Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More... | |
template<class FluidState > | |
static Scalar | density (const FluidState &fluidState, int phaseIdx) |
Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase. More... | |
template<class FluidState > | |
static Scalar | density (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase. More... | |
template<class FluidState > | |
static Scalar | molarDensity (const FluidState &fluidState, int phaseIdx) |
Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More... | |
template<class FluidState > | |
static Scalar | molarDensity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More... | |
template<class FluidState > | |
static Scalar | viscosity (const FluidState &fluidState, int phaseIdx) |
Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More... | |
template<class FluidState > | |
static Scalar | viscosity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More... | |
template<class FluidState > | |
static Scalar | fugacityCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx) |
Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase. More... | |
template<class FluidState > | |
static Scalar | fugacityCoefficient (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx, int compIdx) |
Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase. More... | |
template<class FluidState > | |
static Scalar | diffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx) |
Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More... | |
template<class FluidState > | |
static Scalar | diffusionCoefficient (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx, int compIdx) |
Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More... | |
template<class FluidState > | |
static Scalar | binaryDiffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx) |
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More... | |
template<class FluidState > | |
static Scalar | binaryDiffusionCoefficient (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx, int compIIdx, int compJIdx) |
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More... | |
template<class FluidState > | |
static Scalar | enthalpy (const FluidState &fluidState, int phaseIdx) |
Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More... | |
template<class FluidState > | |
static Scalar | enthalpy (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More... | |
template<class FluidState > | |
static Scalar | thermalConductivity (const FluidState &fluidState, int phaseIdx) |
Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\). More... | |
template<class FluidState > | |
static Scalar | thermalConductivity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\). More... | |
template<class FluidState > | |
static Scalar | heatCapacity (const FluidState &fluidState, int phaseIdx) |
Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More... | |
template<class FluidState > | |
static Scalar | heatCapacity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More... | |
Static Public Attributes | |
static constexpr int | numComponents = useConstantSalinity ? 2 : 3 |
static constexpr int | numPhases = 2 |
static constexpr int | liquidPhaseIdx = 0 |
index of the liquid phase More... | |
static constexpr int | gasPhaseIdx = 1 |
index of the gas phase More... | |
static constexpr int | phase0Idx = liquidPhaseIdx |
index of the first phase More... | |
static constexpr int | phase1Idx = gasPhaseIdx |
index of the second phase More... | |
static constexpr int | comp0Idx = 0 |
static constexpr int | comp1Idx = 1 |
static constexpr int | CO2Idx = comp1Idx |
using Dumux::FluidSystems::BrineCO2< Scalar, CO2Table, H2OType, Policy >::Brine = BrineType |
using Dumux::FluidSystems::BrineCO2< Scalar, CO2Table, H2OType, Policy >::CO2 = Dumux::Components::CO2<Scalar, CO2Table> |
using Dumux::FluidSystems::BrineCO2< Scalar, CO2Table, H2OType, Policy >::H2O = H2OType |
using Dumux::FluidSystems::BrineCO2< Scalar, CO2Table, H2OType, Policy >::ParameterCache = NullParameterCache |
|
inlinestatic |
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase.
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
compIIdx | Index of the component i |
compJIdx | Index of the component j |
|
inlinestatic |
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase.
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
compIIdx | Index of the component i |
compJIdx | Index of the component j |
|
inlinestatic |
Given the phase compositions, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) of two components in a phase.
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
compIIdx | Index of the component i |
compJIdx | Index of the component j |
|
inlinestatic |
Returns the specific enthalpy \(\mathrm{[J/kg]}\) of a component in a specific phase.
fluidState | The fluid state |
phaseIdx | The index of the phase |
componentIdx | The index of the component |
|
inlinestatic |
Return the human readable name of a component.
compIdx | The index of the component to consider |
|
inlinestatic |
Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase.
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase.
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
Given a phase's composition, temperature, pressure, and the partial pressures of all components, return its density \(\mathrm{[kg/m^3]}\).
fluidState | The fluid state |
phaseIdx | The index of the phase |
|
inlinestatic |
Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\).
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law |
\[ J = - D \mathbf{grad} \mu_\kappa \]
where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation
\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]
where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.
|
inlinestatic |
Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\).
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law |
\[ J = - D \mathbf{grad} \mu_\kappa \]
where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation
\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]
where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.
|
inlinestatic |
Calculate the molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\).
Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law
\[ J = - D \textbf{grad} mu_\kappa \]
where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(D\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation
\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]
where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.
Maybe see http://www.ddbst.de/en/EED/PCP/DIF_C1050.php
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
compIdx | The index of the component to consider |
|
inlinestatic |
Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\).
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\).
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
Given the phase composition, return the specific phase enthalpy \(\mathrm{[J/kg]}\).
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
|
inlinestatic |
Returns the equilibrium concentration of the dissolved component in a phase.
fluidState | An arbitrary fluid state |
paramCache | Parameter cache |
phaseIdx | The index of the fluid phase to consider |
|
inlinestatic |
Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase.
The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation
\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component |
|
inlinestatic |
Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase.
The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation
\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component |
|
inlinestatic |
Returns the fugacity coefficient \(\mathrm{[-]}\) of a component in a phase.
The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) of component \(\mathrm{\kappa}\) in phase \(\mathrm{\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation
\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]
where \(\mathrm{p_\alpha}\) is the pressure of the fluid phase.
The fugacity itself is just an other way to express the chemical potential \(\mathrm{\zeta^\kappa_\alpha}\) of the component:
\[ f^\kappa_\alpha := \exp\left\{\frac{\zeta^\kappa_\alpha}{k_B T_\alpha} \right\} \]
where \(\mathrm{k_B}\) is Boltzmann's constant.
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
compIdx | The index of the component |
|
inlinestatic |
Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\).
fluidState | represents all relevant thermodynamic quantities of a fluid system |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
Given a fluid state, an up-to-date parameter cache and a phase index, this method computes the isobaric heat capacity \(c_{p,\alpha}\) of the fluid phase. The isobaric heat capacity is defined as the partial derivative of the specific enthalpy \(h_\alpha\) to the fluid pressure \(p_\alpha\):
\( c_{p,\alpha} = \frac{\partial h_\alpha}{\partial p_\alpha} \)
|
inlinestatic |
Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\).
fluidState | represents all relevant thermodynamic quantities of a fluid system |
phaseIdx | Index of the fluid phase |
Given a fluid state, an up-to-date parameter cache and a phase index, this method computes the isobaric heat capacity \(c_{p,\alpha}\) of the fluid phase. The isobaric heat capacity is defined as the partial derivative of the specific enthalpy \(h_\alpha\) to the fluid pressure \(p_\alpha\):
\( c_{p,\alpha} = \frac{\partial h_\alpha}{\partial p_\alpha} \)
|
inlinestatic |
Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\).
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
|
inlinestatic |
|
inlinestatic |
|
inlinestaticconstexpr |
Returns true if and only if a fluid phase is assumed to be compressible.
Compressible means that the partial derivative of the density to the fluid pressure is always larger than zero.
phaseIdx | The index of the fluid phase to consider |
|
inlinestaticconstexpr |
Return whether a phase is gaseous.
phaseIdx | The index of the fluid phase to consider |
|
inlinestaticconstexpr |
Returns true if and only if a fluid phase is assumed to be an ideal gas.
phaseIdx | The index of the fluid phase to consider |
|
inlinestatic |
Returns true if and only if a fluid phase is assumed to be an ideal mixture.
We define an ideal mixture as a fluid phase where the fugacity coefficients of all components times the pressure of the phase are independent on the fluid composition. This assumption is true if Henry's law and Raoult's law apply. If you are unsure what this function should return, it is safe to return false. The only damage done will be (slightly) increased computation times in some cases.
phaseIdx | The index of the fluid phase to consider |
|
inlinestaticconstexpr |
Returns whether the fluids are miscible.
|
inlinestatic |
Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase.
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase.
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
The molar density \(\rho_{mol,\alpha}\) of a fluid phase \(\alpha\) in \(\mathrm{[mol/m^3]}\).
The molar density is defined by the mass density \(\rho_\alpha\) and the mean molar mass \(\overline M_\alpha\):
\[\rho_{mol,\alpha} = \frac{\rho_\alpha}{\overline M_\alpha} \;.\]
|
inlinestatic |
Return the molar mass of a component in \(\mathrm{[kg/mol]}\).
compIdx | The index of the component to consider |
|
inlinestatic |
Return the human readable name of a fluid phase.
phaseIdx | The index of the fluid phase to consider |
|
inlinestatic |
Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\).
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\).
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
Thermal conductivity of a fluid phase \(\mathrm{[W/(m K)]}\).
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
|
inlinestatic |
Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\).
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\).
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\).
fluidState | An arbitrary fluid state |
phaseIdx | The index of the fluid phase to consider |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
index of the gas phase
|
staticconstexpr |
index of the liquid phase
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
index of the first phase
|
staticconstexpr |
index of the second phase