A two-phase-flow, isothermal pore-network model using the fully implicit scheme. More...
#include <dumux/common/properties.hh>
#include <dumux/flux/porenetwork/advection.hh>
#include <dumux/porenetwork/properties.hh>
#include <dumux/material/fluidmatrixinteractions/porenetwork/throat/transmissibility1p.hh>
#include <dumux/material/fluidmatrixinteractions/porenetwork/throat/transmissibility2p.hh>
#include <dumux/material/fluidmatrixinteractions/porenetwork/pore/2p/multishapelocalrules.hh>
#include <dumux/porousmediumflow/immiscible/localresidual.hh>
#include <dumux/porousmediumflow/nonisothermal/model.hh>
#include <dumux/porousmediumflow/nonisothermal/indices.hh>
#include <dumux/porousmediumflow/nonisothermal/iofields.hh>
#include <dumux/porousmediumflow/2p/model.hh>
#include "fluxvariablescache.hh"
#include "gridfluxvariablescache.hh"
#include "iofields.hh"
#include "volumevariables.hh"
#include "spatialparams.hh"
Go to the source code of this file.
A two-phase-flow, isothermal pore-network model using the fully implicit scheme.
A mass balance equation is formulated for each pore body i and each phase \alpha:
V_i \frac{\partial (\varrho_\alpha S_\alpha)_i}{\partial t} + \sum_j (\varrho_\alpha Q_\alpha)_{ij} = (V q_\alpha)_i ~.
V_i is the pore body volume, and the advective mass flow (\varrho_\alpha Q_\alpha)_{ij} through throat ij can be based on the fluid phase density \varrho either of the upstream pore body i or j (upwinding) or on the respective averaged value. q_\alpha is a mass sink or source term defined on pore body i.
Per default, the volume flow rate Q_{\alpha,ij} follows a linear Hagen-Poiseuille-type law (PoreNetworkModel::CreepingFlow) which is only valid for Re < 1:
Q_{\alpha,ij} = g_{\alpha, ij} (p_{\alpha, i} - p_{\alpha, j} + \Psi_\alpha) ~.
g_{\alpha,ij} is a suitable throat conductance value that takes into account the presence/saturation of the individual phases while p_{\alpha,i} and p_{\alpha,j} are averaged pore body phase pressures.
The (optional) influence of gravity is given by
\Psi_\alpha = \varrho_\alpha \mathbf{g} (\mathbf{x_i} - \mathbf{x_j}) ~,
where \mathbf{x_i} - \mathbf{x_j} is the distance vector between the centers of pore bodies i and j and \mathbf{g} is the gravitational acceleration.
The primary variables are the wetting phase pressure and the the nonwetting phase saturation ( p_w and S_n) or the nonwetting phase pressure and the the wetting phase saturation ( p_n and S_w), depending on the chose formulation (see TwoPModel).
Namespaces | |
namespace | Dumux |
namespace | Dumux::Properties |
namespace | Dumux::Properties::TTag |
Type tag for numeric models. | |