3.5-git
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
Static Public Member Functions | List of all members
Dumux::ThermalConductivitySomerton< Scalar > Class Template Reference

Relation for the saturation-dependent effective thermal conductivity. More...

#include <dumux/material/fluidmatrixinteractions/2p/thermalconductivity/somerton.hh>

Description

template<class Scalar>
class Dumux::ThermalConductivitySomerton< Scalar >

Relation for the saturation-dependent effective thermal conductivity.

The Somerton method computes the thermal conductivity of dry and the wet soil material and uses a root function of the wetting saturation to compute the effective thermal conductivity for a two-phase fluidsystem. The individual thermal conductivities are calculated as geometric mean of the thermal conductivity of the porous material and of the respective fluid phase.

The material law is: \(\mathrm{ \lambda_\text{eff} = \lambda_{\text{dry}} + \sqrt{(S_w)} \left(\lambda_\text{wet} - \lambda_\text{dry}\right) }\)

with \(\mathrm{ \lambda_\text{wet} = \lambda_{solid}^{\left(1-\phi\right)}*\lambda_w^\phi }\) and

\(\mathrm{ \lambda_\text{dry} = \lambda_{solid}^{\left(1-\phi\right)}*\lambda_n^\phi. }\)

The Somerton method computes the thermal conductivity of dry and the wet soil material. It is extended here to a three phase system of water (w), NAPL (n) and gas (g). It uses a root function of the water and NAPL saturation to compute the effective thermal conductivity for a three-phase fluidsystem. The individual thermal conductivities are calculated as geometric mean of the thermal conductivity of the porous material and of the respective fluid phase.

The material law is:

\[ \lambda_\text{eff} = \lambda_\text{g,eff} + \sqrt{(S_w)} \left(\lambda_\text{w,eff} - \lambda_\text{g,eff}\right) + \sqrt{(S_n)} \left(\lambda0_\text{n,eff} - \lambda_\text{g,eff}\right) \]

with

\[ \lambda_\text{w,eff} = \lambda_{solid}^{\left(1-\phi\right)}*\lambda_w^\phi \]

and

\[ \lambda0_\text{n,eff} = \lambda_{solid}^{\left(1-\phi\right)}*\lambda_n^\phi. \]

Static Public Member Functions

template<class VolumeVariables >
static Scalar effectiveThermalConductivity (const VolumeVariables &volVars)
 effective thermal conductivity \(\mathrm{[W/(m K)]}\) after Somerton (1974) [61]
More...
 
template<class VolumeVariables >
static Scalar effectiveThermalConductivity (const VolumeVariables &volVars)
 effective thermal conductivity \(\mathrm{[W/(m K)]}\) after Somerton (1974) extended for a three phase system More...
 
static Scalar effectiveThermalConductivity (const Scalar sw, const Scalar sn, const Scalar lambdaW, const Scalar lambdaN, const Scalar lambdaG, const Scalar lambdaSolid, const Scalar porosity)
 effective thermal conductivity \(\mathrm{[W/(m K)]}\) after Somerton (1974) More...
 

Member Function Documentation

◆ effectiveThermalConductivity() [1/3]

template<class Scalar >
static Scalar Dumux::ThermalConductivitySomerton< Scalar >::effectiveThermalConductivity ( const Scalar  sw,
const Scalar  sn,
const Scalar  lambdaW,
const Scalar  lambdaN,
const Scalar  lambdaG,
const Scalar  lambdaSolid,
const Scalar  porosity 
)
inlinestatic

effective thermal conductivity \(\mathrm{[W/(m K)]}\) after Somerton (1974)

Parameters
swThe saturation of the wetting phase
snThe saturation of the nonwetting phase
lambdaWThe thermal conductivity of the water phase in \(\mathrm{[W/(m K)]}\)
lambdaNThe thermal conductivity of the NAPL phase in \(\mathrm{[W/(m K)]}\)
lambdaGThe thermal conductivity of the gas phase in \(\mathrm{[W/(m K)]}\)
lambdaSolidThe thermal conductivity of the solid phase in \(\mathrm{[W/(m K)]}\)
porosityThe porosity
Returns
effective thermal conductivity \(\mathrm{[W/(m K)]}\) after Somerton (1974)

◆ effectiveThermalConductivity() [2/3]

template<class Scalar >
template<class VolumeVariables >
static Scalar Dumux::ThermalConductivitySomerton< Scalar >::effectiveThermalConductivity ( const VolumeVariables &  volVars)
inlinestatic

effective thermal conductivity \(\mathrm{[W/(m K)]}\) after Somerton (1974) [61]

Parameters
volVarsvolume variables
Returns
effective thermal conductivity \(\mathrm{[W/(m K)]}\) after Somerton (1974) [61]

This gives an interpolation of the effective thermal conductivities of a porous medium filled with the nonwetting phase and a porous medium filled with the wetting phase. These two effective conductivities are computed as geometric mean of the solid and the fluid conductivities and interpolated with the square root of the wetting saturation. See f.e. Ebigbo, A.: Thermal Effects of Carbon Dioxide Sequestration in the Subsurface, Diploma thesis [20] .

◆ effectiveThermalConductivity() [3/3]

template<class Scalar >
template<class VolumeVariables >
static Scalar Dumux::ThermalConductivitySomerton< Scalar >::effectiveThermalConductivity ( const VolumeVariables &  volVars)
inlinestatic

effective thermal conductivity \(\mathrm{[W/(m K)]}\) after Somerton (1974) extended for a three phase system

Parameters
volVarsvolume variables
Returns
effective thermal conductivity \(\mathrm{[W/(m K)]}\) after Somerton (1974)

This gives an interpolation of the effective thermal conductivities of a porous medium filled with the water phase (w), a NAPL phase (n) and a gas phase (g). These two effective conductivities are computed as geometric mean of the solid and the fluid conductivities and interpolated with the square root of the wetting saturation.


The documentation for this class was generated from the following files: