3.3.0
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
Static Public Member Functions | List of all members
Dumux::BinaryCoeff::H2O_O2 Class Reference

Binary coefficients for water and oxygen. More...

#include <dumux/material/binarycoefficients/h2o_o2.hh>

Description

Binary coefficients for water and oxygen.

Static Public Member Functions

template<class Scalar >
static Scalar henry (Scalar temperature)
 Henry coefficient \(\mathrm{[Pa]}\) for molecular oxygen in liquid water. More...
 
template<class Scalar >
static Scalar gasDiffCoeff (Scalar temperature, Scalar pressure)
 Binary diffusion coefficient \(\mathrm{[m^2/s]}\) for molecular water and oxygen. More...
 
template<class Scalar >
static Scalar liquidDiffCoeff (Scalar temperature, Scalar pressure)
 Diffusion coefficient \(\mathrm{[m^2/s]}\) for molecular oxygen in liquid water. More...
 

Member Function Documentation

◆ gasDiffCoeff()

template<class Scalar >
static Scalar Dumux::BinaryCoeff::H2O_O2::gasDiffCoeff ( Scalar  temperature,
Scalar  pressure 
)
inlinestatic

Binary diffusion coefficient \(\mathrm{[m^2/s]}\) for molecular water and oxygen.

Uses fullerMethod to determine the diffusion of water in nitrogen.

Parameters
temperaturethe temperature \(\mathrm{[K]}\)
pressurethe phase pressure \(\mathrm{[Pa]}\)

◆ henry()

template<class Scalar >
static Scalar Dumux::BinaryCoeff::H2O_O2::henry ( Scalar  temperature)
inlinestatic

Henry coefficient \(\mathrm{[Pa]}\) for molecular oxygen in liquid water.

Parameters
temperaturethe temperature \(\mathrm{[K]}\)

◆ liquidDiffCoeff()

template<class Scalar >
static Scalar Dumux::BinaryCoeff::H2O_O2::liquidDiffCoeff ( Scalar  temperature,
Scalar  pressure 
)
inlinestatic

Diffusion coefficient \(\mathrm{[m^2/s]}\) for molecular oxygen in liquid water.

Parameters
temperaturethe temperature \(\mathrm{[K]}\)
pressurethe phase pressure \(\mathrm{[Pa]}\)

The empirical equations for estimating the diffusion coefficient in infinite solution which are presented in Reid, 1987 all show a linear dependency on temperature. We thus simply scale the experimentally obtained diffusion coefficient of Ferrell and Himmelblau by the temperature.

See:

R. Reid et al. (1987, pp. 599) [56]

R. Ferrell, D. Himmelblau (1967, pp. 111-115) [21]


The documentation for this class was generated from the following file: