3.2-git
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
brineair.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*****************************************************************************
4 * See the file COPYING for full copying permissions. *
5 * *
6 * This program is free software: you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation, either version 3 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 *****************************************************************************/
24#ifndef DUMUX_BRINE_AIR_FLUID_SYSTEM_HH
25#define DUMUX_BRINE_AIR_FLUID_SYSTEM_HH
26
27#include <array>
28#include <cassert>
29#include <iomanip>
30
40
43
44#include <dumux/io/name.hh>
45
46#include "brine.hh"
47
48namespace Dumux {
49namespace FluidSystems {
50
55template<bool fastButSimplifiedRelations = false>
57{
58 static constexpr bool useBrineDensityAsLiquidMixtureDensity() { return fastButSimplifiedRelations;}
59 static constexpr bool useIdealGasDensity() { return fastButSimplifiedRelations; }
60};
61
70template <class Scalar,
72 class Policy = BrineAirDefaultPolicy<>>
74: public Base<Scalar, BrineAir<Scalar, H2Otype, Policy>>
75{
79
80public:
82 using H2O = H2Otype;
85
88
91
94
95 /****************************************
96 * Fluid phase related static parameters
97 ****************************************/
98 static constexpr int numPhases = 2; // one liquid and one gas phase
99 static constexpr int numComponents = 3; // H2O, Air, NaCl
100
101 static constexpr int liquidPhaseIdx = 0; // index of the liquid phase
102 static constexpr int gasPhaseIdx = 1; // index of the gas phase
103
104 static constexpr int phase0Idx = liquidPhaseIdx; // index of the first phase
105 static constexpr int phase1Idx = gasPhaseIdx; // index of the second phase
106
107 // export component indices to indicate the main component
108 // of the corresponding phase at atmospheric pressure 1 bar
109 // and room temperature 20°C:
110 static constexpr int H2OIdx = 0;
111 static constexpr int AirIdx = 1;
112 static constexpr int NaClIdx = 2;
113 static constexpr int comp0Idx = H2OIdx;
114 static constexpr int comp1Idx = AirIdx;
115 static constexpr int comp2Idx = NaClIdx;
116
117private:
118 struct BrineAdapterPolicy
119 {
120 using FluidSystem = Brine;
121
122 static constexpr int phaseIdx(int brinePhaseIdx) { return liquidPhaseIdx; }
123 static constexpr int compIdx(int brineCompIdx)
124 {
125 switch (brineCompIdx)
126 {
127 case Brine::H2OIdx: return H2OIdx;
128 case Brine::NaClIdx: return NaClIdx;
129 default: return 0; // this will never be reached, only needed to suppress compiler warning
130 }
131 }
132 };
133
134 template<class FluidState>
136
137public:
138
139 /****************************************
140 * phase related static parameters
141 ****************************************/
142
147 static std::string phaseName(int phaseIdx)
148 {
149 assert(0 <= phaseIdx && phaseIdx < numPhases);
150 switch (phaseIdx)
151 {
152 case liquidPhaseIdx: return IOName::liquidPhase();
153 case gasPhaseIdx: return IOName::gaseousPhase();
154 }
155 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
156 }
157
161 static constexpr bool isMiscible()
162 { return true; }
163
168 static constexpr bool isGas(int phaseIdx)
169 {
170 assert(0 <= phaseIdx && phaseIdx < numPhases);
171 return phaseIdx == gasPhaseIdx;
172 }
173
188 static bool isIdealMixture(int phaseIdx)
189 {
190 assert(0 <= phaseIdx && phaseIdx < numPhases);
191 // we assume Henry's and Raoult's laws for the water phase and
192 // and no interaction between gas molecules of different
193 // components, so all phases are ideal mixtures!
194 return true;
195 }
196
206 static constexpr bool isCompressible(int phaseIdx)
207 {
208 assert(0 <= phaseIdx && phaseIdx < numPhases);
209 // ideal gases are always compressible
210 if (phaseIdx == gasPhaseIdx)
211 return true;
212 // let brine decide for the liquid phase...
214 }
215
221 static bool isIdealGas(int phaseIdx)
222 {
223 assert(0 <= phaseIdx && phaseIdx < numPhases);
224 // let the fluids decide
225 if (phaseIdx == gasPhaseIdx)
226 return H2O::gasIsIdeal() && Air::gasIsIdeal();
227 return false; // not a gas
228 }
229
234 static constexpr int getMainComponent(int phaseIdx)
235 {
236 assert(0 <= phaseIdx && phaseIdx < numPhases);
237 if (phaseIdx == liquidPhaseIdx)
238 return H2OIdx;
239 else
240 return AirIdx;
241 }
242
243 /****************************************
244 * Component related static parameters
245 ****************************************/
250 static std::string componentName(int compIdx)
251 {
252 assert(0 <= compIdx && compIdx < numComponents);
253 switch (compIdx)
254 {
255 case H2OIdx: return H2O::name();
256 case AirIdx: return Air::name();
257 case NaClIdx: return NaCl::name();
258 }
259 DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx);
260 }
261
266 static Scalar molarMass(int compIdx)
267 {
268 assert(0 <= compIdx && compIdx < numComponents);
269 switch (compIdx)
270 {
271 case H2OIdx: return H2O::molarMass();
272 case AirIdx: return Air::molarMass();
273 case NaClIdx: return NaCl::molarMass();
274 }
275 DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << compIdx);
276 }
277
284 template <class FluidState>
285 static Scalar vaporPressure(const FluidState& fluidState, int compIdx)
286 {
287 // The vapor pressure of the water is affected by the
288 // salinity, thus, we forward to the interface of Brine here
289 if (compIdx == H2OIdx)
291 else if (compIdx == NaClIdx)
292 DUNE_THROW(Dune::NotImplemented, "NaCl::vaporPressure(t)");
293 else
294 DUNE_THROW(Dune::NotImplemented, "Invalid component index " << compIdx);
295 }
296
297 /****************************************
298 * thermodynamic relations
299 ****************************************/
306 static void init()
307 {
308 init(/*tempMin=*/273.15,
309 /*tempMax=*/800.0,
310 /*numTemptempSteps=*/200,
311 /*startPressure=*/-10,
312 /*endPressure=*/20e6,
313 /*pressureSteps=*/200);
314 }
315
327 static void init(Scalar tempMin, Scalar tempMax, unsigned nTemp,
328 Scalar pressMin, Scalar pressMax, unsigned nPress)
329 {
330 std::cout << "The brine-air fluid system was configured with the following policy:\n";
331 std::cout << " - use brine density as liquid mixture density: " << std::boolalpha << Policy::useBrineDensityAsLiquidMixtureDensity() << "\n";
332 std::cout << " - use ideal gas density: " << std::boolalpha << Policy::useIdealGasDensity() << std::endl;
333
334 if (H2O::isTabulated)
335 H2O::init(tempMin, tempMax, nTemp, pressMin, pressMax, nPress);
336 }
337
338 using Base::density;
352 template <class FluidState>
353 static Scalar density(const FluidState &fluidState, int phaseIdx)
354 {
355 assert(0 <= phaseIdx && phaseIdx < numPhases);
356
357 const auto T = fluidState.temperature(phaseIdx);
358 const auto p = fluidState.pressure(phaseIdx);
359
360 if (phaseIdx == liquidPhaseIdx)
361 {
362 // assume pure brine
363 if (Policy::useBrineDensityAsLiquidMixtureDensity())
365
366 // assume one molecule of gas replaces one "brine" molecule
367 else
369 *(H2O::molarMass()*fluidState.moleFraction(liquidPhaseIdx, H2OIdx)
370 + NaCl::molarMass()*fluidState.moleFraction(liquidPhaseIdx, NaClIdx)
371 + Air::molarMass()*fluidState.moleFraction(liquidPhaseIdx, AirIdx));
372 }
373 else if (phaseIdx == phase1Idx)
374 {
375 // for the gas phase assume an ideal gas
376 if (Policy::useIdealGasDensity())
377 return IdealGas::density(fluidState.averageMolarMass(phase1Idx), T, p);
378
379 // if useComplexRelations = true, compute density. NaCl is assumed
380 // not to be present in gas phase, NaCl has only solid interfaces implemented
381 return H2O::gasDensity(T, fluidState.partialPressure(phase1Idx, H2OIdx))
382 + Air::gasDensity(T, fluidState.partialPressure(phase1Idx, AirIdx));
383 }
384 else
385 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
386 }
387
388 using Base::molarDensity;
398 template <class FluidState>
399 static Scalar molarDensity(const FluidState& fluidState, int phaseIdx)
400 {
401 if (phaseIdx == liquidPhaseIdx)
403 else if (phaseIdx == phase1Idx)
404 {
405 const Scalar T = fluidState.temperature(phaseIdx);
406
407 // for the gas phase assume an ideal gas
408 if (Policy::useIdealGasDensity())
409 return IdealGas::molarDensity(T, fluidState.pressure(phaseIdx));
410
411 // if useComplexRelations = true, compute density. NaCl is assumed
412 // not to be present in gas phase, NaCl has only solid interfaces implemented
413 return H2O::gasMolarDensity(T, fluidState.partialPressure(phase1Idx, H2OIdx))
414 + Air::gasMolarDensity(T, fluidState.partialPressure(phase1Idx, AirIdx));
415 }
416 else
417 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
418 }
419
420 using Base::viscosity;
431 template <class FluidState>
432 static Scalar viscosity(const FluidState& fluidState, int phaseIdx)
433 {
434 assert(0 <= phaseIdx && phaseIdx < numPhases);
435
436 if (phaseIdx == liquidPhaseIdx)
438 else
439 return Air::gasViscosity(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx));
440 }
441
464 template <class FluidState>
465 static Scalar fugacityCoefficient(const FluidState& fluidState, int phaseIdx, int compIdx)
466 {
467 assert(0 <= phaseIdx && phaseIdx < numPhases);
468 assert(0 <= compIdx && compIdx < numComponents);
469
470 Scalar T = fluidState.temperature(phaseIdx);
471 Scalar p = fluidState.pressure(phaseIdx);
472
473 if (phaseIdx == gasPhaseIdx)
474 return 1.0;
475
476 else if (phaseIdx == liquidPhaseIdx)
477 {
478 // TODO: Should we use the vapor pressure of the mixture (brine) here?
479 // The presence of NaCl lowers the vapor pressure, thus, we would
480 // expect the fugacity coefficient to be lower as well. However,
481 // with the fugacity coefficient being dependent on the salinity,
482 // the equation system for the phase equilibria becomes non-linear
483 // and our constraint solvers assume linear system of equations.
484 if (compIdx == H2OIdx)
485 return H2O::vaporPressure(T)/p;
486
487 else if (compIdx == AirIdx)
488 return BinaryCoeff::H2O_Air::henry(T)/p;
489
490 // we assume nacl always stays in the liquid phase
491 else
492 return 0.0;
493 }
494
495 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
496 }
497
499 template <class FluidState>
500 static Scalar diffusionCoefficient(const FluidState &fluidState,
501 int phaseIdx,
502 int compIdx)
503 {
504 DUNE_THROW(Dune::NotImplemented, "Diffusion coefficients");
505 }
506
518 template <class FluidState>
519 static Scalar binaryDiffusionCoefficient(const FluidState& fluidState,
520 int phaseIdx,
521 int compIIdx,
522 int compJIdx)
523 {
524 assert(0 <= phaseIdx && phaseIdx < numPhases);
525 assert(0 <= compIIdx && compIIdx < numComponents);
526 assert(0 <= compJIdx && compJIdx < numComponents);
527
528 const auto T = fluidState.temperature(phaseIdx);
529 const auto p = fluidState.pressure(phaseIdx);
530
531 if (compIIdx > compJIdx)
532 std::swap(compIIdx, compJIdx);
533
534 if (phaseIdx == liquidPhaseIdx)
535 {
536 if(compIIdx == H2OIdx && compJIdx == AirIdx)
537 return H2O_Air::liquidDiffCoeff(T, p);
538 else if (compIIdx == H2OIdx && compJIdx == NaClIdx)
540 else
541 DUNE_THROW(Dune::NotImplemented, "Binary diffusion coefficient of components "
542 << compIIdx << " and " << compJIdx
543 << " in phase " << phaseIdx);
544 }
545 else if (phaseIdx == gasPhaseIdx)
546 {
547 if (compIIdx == H2OIdx && compJIdx == AirIdx)
548 return H2O_Air::gasDiffCoeff(T, p);
549
550 // NaCl is expected to never be present in the gas phase. we need to
551 // return a diffusion coefficient that does not case numerical problems.
552 // We choose a very small value here.
553 else if (compIIdx == AirIdx && compJIdx == NaClIdx)
554 return 1e-12;
555
556 else
557 DUNE_THROW(Dune::NotImplemented, "Binary diffusion coefficient of components "
558 << compIIdx << " and " << compJIdx
559 << " in phase " << phaseIdx);
560 }
561
562 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
563 }
564
565 using Base::enthalpy;
585 template <class FluidState>
586 static Scalar enthalpy(const FluidState& fluidState, int phaseIdx)
587 {
588 assert(0 <= phaseIdx && phaseIdx < numPhases);
589
590 Scalar T = fluidState.temperature(phaseIdx);
591 Scalar p = fluidState.pressure(phaseIdx);
592
593 if (phaseIdx == liquidPhaseIdx)
595 else
596 {
597 // This assumes NaCl not to be present in the gas phase
598 Scalar XAir = fluidState.massFraction(gasPhaseIdx, AirIdx);
599 Scalar XH2O = fluidState.massFraction(gasPhaseIdx, H2OIdx);
600
601 Scalar result = 0;
602 result += XH2O * H2O::gasEnthalpy(T, p);
603 result += XAir * Air::gasEnthalpy(T, p);
605 return result;
606 }
607 }
608
615 template <class FluidState>
616 static Scalar componentEnthalpy(const FluidState& fluidState, int phaseIdx, int componentIdx)
617 {
618 const Scalar T = fluidState.temperature(gasPhaseIdx);
619 const Scalar p = fluidState.pressure(gasPhaseIdx);
620
621 if (phaseIdx == liquidPhaseIdx)
622 DUNE_THROW(Dune::NotImplemented, "The component enthalpies in the liquid phase are not implemented.");
623
624 else if (phaseIdx == gasPhaseIdx)
625 {
626 if (componentIdx == H2OIdx)
627 return H2O::gasEnthalpy(T, p);
628 else if (componentIdx == AirIdx)
629 return Air::gasEnthalpy(T, p);
630 else if (componentIdx == NaClIdx)
631 DUNE_THROW(Dune::InvalidStateException, "Implementation assumes NaCl not to be present in gas phase");
632 DUNE_THROW(Dune::InvalidStateException, "Invalid component index " << componentIdx);
633 }
634 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
635 }
636
647 template <class FluidState>
648 static Scalar thermalConductivity(const FluidState& fluidState, int phaseIdx)
649 {
650 if (phaseIdx == liquidPhaseIdx)
652 else if (phaseIdx == gasPhaseIdx)
653 return Air::gasThermalConductivity(fluidState.temperature(phaseIdx), fluidState.pressure(phaseIdx));
654
655 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
656 }
657
668 using Base::heatCapacity;
669 template <class FluidState>
670 static Scalar heatCapacity(const FluidState &fluidState, int phaseIdx)
671 {
672 const Scalar T = fluidState.temperature(phaseIdx);
673 const Scalar p = fluidState.pressure(phaseIdx);
674
675 if (phaseIdx == liquidPhaseIdx)
677
678 // We assume NaCl not to be present in the gas phase here
679 else if (phaseIdx == gasPhaseIdx)
680 return Air::gasHeatCapacity(T, p)*fluidState.moleFraction(gasPhaseIdx, AirIdx)
681 + H2O::gasHeatCapacity(T, p)*fluidState.moleFraction(gasPhaseIdx, H2OIdx);
682
683 DUNE_THROW(Dune::InvalidStateException, "Invalid phase index " << phaseIdx);
684 }
685};
686
687} // end namespace FluidSystems
688} // end namespace Dumux
689
690#endif
Some exceptions thrown in DuMux
Some templates to wrap the valgrind macros.
A collection of input/output field names for common physical quantities.
Binary coefficients for water and air.
A simple class for the air fluid properties.
Material properties of pure water .
Material properties of pure salt .
Tabulates all thermodynamic properties of a given untabulated chemical species.
Adapter class for fluid states with different indices.
Relations valid for an ideal gas.
bool CheckDefined(const T &value)
Make valgrind complain if the object occupied by an object is undefined.
Definition: valgrind.hh:72
Definition: adapt.hh:29
std::string gaseousPhase() noexcept
I/O name of gaseous phase.
Definition: name.hh:123
std::string liquidPhase() noexcept
I/O name of liquid phase.
Definition: name.hh:119
Binary coefficients for water and air.
Definition: h2o_air.hh:37
static Scalar henry(Scalar temperature)
Henry coefficient for air in liquid water.
Definition: h2o_air.hh:48
static Scalar gasDiffCoeff(Scalar temperature, Scalar pressure)
Binary diffusion coefficient for molecular water and air.
Definition: h2o_air.hh:68
static Scalar liquidDiffCoeff(Scalar temperature, Scalar pressure)
Diffusion coefficient for molecular nitrogen in liquid water.
Definition: h2o_air.hh:101
A class for the air fluid properties.
Definition: air.hh:46
static Scalar gasDensity(Scalar temperature, Scalar pressure)
The density of Air at a given pressure and temperature.
Definition: air.hh:84
static constexpr Scalar molarMass()
The molar mass in of Air.
Definition: air.hh:61
static const Scalar gasHeatCapacity(Scalar temperature, Scalar pressure)
Specific isobaric heat capacity of pure air.
Definition: air.hh:305
static Scalar gasViscosity(Scalar temperature, Scalar pressure)
The dynamic viscosity of Air at a given pressure and temperature.
Definition: air.hh:186
static Scalar gasThermalConductivity(Scalar temperature, Scalar pressure)
Thermal conductivity of air.
Definition: air.hh:342
static constexpr bool gasIsIdeal()
Returns true, the gas phase is assumed to be ideal.
Definition: air.hh:108
static Scalar gasEnthalpy(Scalar temperature, Scalar pressure)
Specific enthalpy of Air with 273.15 as basis.
Definition: air.hh:268
static std::string name()
A human readable name for Air.
Definition: air.hh:53
static Scalar gasMolarDensity(Scalar temperature, Scalar pressure)
The molar density of air in , depending on pressure and temperature.
Definition: air.hh:96
A class for the NaCl properties.
Definition: nacl.hh:47
static std::string name()
A human readable name for the NaCl.
Definition: nacl.hh:52
static constexpr Scalar molarMass()
The molar mass of NaCl in .
Definition: nacl.hh:60
Tabulates all thermodynamic properties of a given untabulated chemical species.
Definition: tabulatedcomponent.hh:82
Adapter class for fluid states with different indices.
Definition: adapter.hh:44
Fluid system base class.
Definition: fluidsystems/base.hh:45
static Scalar density(const FluidState &fluidState, int phaseIdx)
Calculate the density of a fluid phase.
Definition: fluidsystems/base.hh:134
static Scalar thermalConductivity(const FluidState &fluidState, int phaseIdx)
Thermal conductivity of a fluid phase .
Definition: fluidsystems/base.hh:390
static Scalar fugacityCoefficient(const FluidState &fluidState, int phaseIdx, int compIdx)
Calculate the fugacity coefficient of an individual component in a fluid phase.
Definition: fluidsystems/base.hh:197
static Scalar diffusionCoefficient(const FluidState &fluidState, int phaseIdx, int compIdx)
Calculate the binary molecular diffusion coefficient for a component in a fluid phase .
Definition: fluidsystems/base.hh:278
static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx)
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient for c...
Definition: fluidsystems/base.hh:326
static Scalar enthalpy(const FluidState &fluidState, int phaseIdx)
Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy .
Definition: fluidsystems/base.hh:363
static Scalar molarDensity(const FluidState &fluidState, int phaseIdx)
Calculate the molar density of a fluid phase.
Definition: fluidsystems/base.hh:160
static Scalar viscosity(const FluidState &fluidState, int phaseIdx)
Calculate the dynamic viscosity of a fluid phase .
Definition: fluidsystems/base.hh:236
static Scalar heatCapacity(const FluidState &fluidState, int phaseIdx)
Specific isobaric heat capacity of a fluid phase .
Definition: fluidsystems/base.hh:424
A compositional single phase fluid system consisting of two components, which are H2O and NaCl.
Definition: fluidsystems/brine.hh:48
static Scalar thermalConductivity(const FluidState &fluidState, int phaseIdx)
Thermal conductivity of a fluid phase .
Definition: fluidsystems/brine.hh:483
static Scalar viscosity(const FluidState &fluidState, int phaseIdx=liquidPhaseIdx)
Return the viscosity of the phase.
Definition: fluidsystems/brine.hh:282
static constexpr int H2OIdx
index of the water component
Definition: fluidsystems/brine.hh:63
static Scalar heatCapacity(const FluidState &fluidState, int phaseIdx)
Specific isobaric heat capacity of a fluid phase. .
Definition: fluidsystems/brine.hh:501
static Scalar enthalpy(const FluidState &fluidState, int phaseIdx)
Given a phase's composition, temperature and pressure, return its specific enthalpy .
Definition: fluidsystems/brine.hh:337
static Scalar vaporPressure(const FluidState &fluidState, int compIdx)
Vapor pressure of a component .
Definition: fluidsystems/brine.hh:308
static constexpr int NaClIdx
index of the NaCl component
Definition: fluidsystems/brine.hh:64
static Scalar molarDensity(const FluidState &fluidState, int phaseIdx=liquidPhaseIdx)
The molar density of the fluid phase in .
Definition: fluidsystems/brine.hh:418
static constexpr int liquidPhaseIdx
The one considered phase is liquid.
Definition: fluidsystems/brine.hh:61
static bool isCompressible(int phaseIdx=liquidPhaseIdx)
Returns true if and only if a fluid phase is assumed to be compressible.
Definition: fluidsystems/brine.hh:126
static Scalar density(const FluidState &fluidState, int phaseIdx=liquidPhaseIdx)
Return the phase density [kg/m^3].
Definition: fluidsystems/brine.hh:226
static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx)
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient for c...
Definition: fluidsystems/brine.hh:445
Policy for the brine-air fluid system.
Definition: brineair.hh:57
static constexpr bool useIdealGasDensity()
Definition: brineair.hh:59
static constexpr bool useBrineDensityAsLiquidMixtureDensity()
Definition: brineair.hh:58
A compositional two-phase fluid system with a liquid and a gaseous phase and , and (dissolved miner...
Definition: brineair.hh:75
static Scalar componentEnthalpy(const FluidState &fluidState, int phaseIdx, int componentIdx)
Returns the specific enthalpy of a component in a specific phase.
Definition: brineair.hh:616
static Scalar density(const FluidState &fluidState, int phaseIdx)
Given a phase's composition, temperature, pressure, and the partial pressures of all components,...
Definition: brineair.hh:353
static Scalar thermalConductivity(const FluidState &fluidState, int phaseIdx)
Thermal conductivity of a fluid phase .
Definition: brineair.hh:648
static constexpr int comp0Idx
Definition: brineair.hh:113
static constexpr bool isCompressible(int phaseIdx)
Returns true if and only if a fluid phase is assumed to be compressible.
Definition: brineair.hh:206
static constexpr int liquidPhaseIdx
Definition: brineair.hh:101
static constexpr int AirIdx
Definition: brineair.hh:111
static constexpr int NaClIdx
Definition: brineair.hh:112
static void init()
Initialize the fluid system's static parameters generically.
Definition: brineair.hh:306
static constexpr int numPhases
Definition: brineair.hh:98
static Scalar heatCapacity(const FluidState &fluidState, int phaseIdx)
Definition: brineair.hh:670
static constexpr int numComponents
Definition: brineair.hh:99
static Scalar binaryDiffusionCoefficient(const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx)
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient for c...
Definition: brineair.hh:519
H2Otype H2O
export the involved components
Definition: brineair.hh:82
static Scalar viscosity(const FluidState &fluidState, int phaseIdx)
Calculate the dynamic viscosity of a fluid phase .
Definition: brineair.hh:432
static constexpr int comp2Idx
Definition: brineair.hh:115
static Scalar enthalpy(const FluidState &fluidState, int phaseIdx)
Given a phase's composition, temperature and pressure, return its specific enthalpy .
Definition: brineair.hh:586
static Scalar molarDensity(const FluidState &fluidState, int phaseIdx)
The molar density of a fluid phase in .
Definition: brineair.hh:399
static constexpr int getMainComponent(int phaseIdx)
Get the main component of a given phase if possible.
Definition: brineair.hh:234
static constexpr bool isGas(int phaseIdx)
Return whether a phase is gaseous.
Definition: brineair.hh:168
static Scalar fugacityCoefficient(const FluidState &fluidState, int phaseIdx, int compIdx)
Returns the fugacity coefficient of a component in a phase.
Definition: brineair.hh:465
static void init(Scalar tempMin, Scalar tempMax, unsigned nTemp, Scalar pressMin, Scalar pressMax, unsigned nPress)
Initialize the fluid system's static parameters using problem specific temperature and pressure range...
Definition: brineair.hh:327
static Scalar molarMass(int compIdx)
Return the molar mass of a component in .
Definition: brineair.hh:266
static Scalar vaporPressure(const FluidState &fluidState, int compIdx)
Vapor pressure of a component .
Definition: brineair.hh:285
static std::string componentName(int compIdx)
Return the human readable name of a component.
Definition: brineair.hh:250
static std::string phaseName(int phaseIdx)
Return the human readable name of a fluid phase.
Definition: brineair.hh:147
static constexpr int comp1Idx
Definition: brineair.hh:114
static constexpr int phase1Idx
Definition: brineair.hh:105
static constexpr int phase0Idx
Definition: brineair.hh:104
static constexpr bool isMiscible()
Returns whether the fluids are miscible.
Definition: brineair.hh:161
static Scalar diffusionCoefficient(const FluidState &fluidState, int phaseIdx, int compIdx)
Definition: brineair.hh:500
static bool isIdealGas(int phaseIdx)
Returns true if and only if a fluid phase is assumed to be an ideal gas.
Definition: brineair.hh:221
static constexpr int gasPhaseIdx
Definition: brineair.hh:102
static bool isIdealMixture(int phaseIdx)
Returns true if and only if a fluid phase is assumed to be an ideal mixture.
Definition: brineair.hh:188
Dumux::FluidSystems::Brine< Scalar, H2Otype > Brine
export the underlying brine fluid system for the liquid phase
Definition: brineair.hh:87
static constexpr int H2OIdx
Definition: brineair.hh:110
The a parameter cache which does nothing.
Definition: nullparametercache.hh:34
Relations valid for an ideal gas.
Definition: idealgas.hh:37
static constexpr Scalar density(Scalar avgMolarMass, Scalar temperature, Scalar pressure)
The density of the gas in , depending on pressure, temperature and average molar mass of the gas.
Definition: idealgas.hh:49
static constexpr Scalar molarDensity(Scalar temperature, Scalar pressure)
The molar density of the gas , depending on pressure and temperature.
Definition: idealgas.hh:70
Fluid system base class.
A fluid system for brine, i.e. H2O with dissolved NaCl.