version 3.10-dev
Dumux::ShallowWaterProblem< TypeTag > Class Template Reference

Shallow water problem base class.

#include <dumux/freeflow/shallowwater/problem.hh>

Inheritance diagram for Dumux::ShallowWaterProblem< TypeTag >:

Public Types

using SpatialParams = GetPropType< TypeTag, Properties::SpatialParams >
 

Public Member Functions

 ShallowWaterProblem (std::shared_ptr< const GridGeometry > gridGeometry, std::shared_ptr< SpatialParams > spatialParams, const std::string &paramGroup="")
 Constructor, passing the spatial parameters. More...
 
 ShallowWaterProblem (std::shared_ptr< const GridGeometry > gridGeometry, const std::string &paramGroup="")
 Constructor, constructing the spatial parameters. More...
 
const SpatialParamsspatialParams () const
 Returns the spatial parameters object. More...
 
const std::string & name () const
 The problem name. More...
 
void setName (const std::string &newName)
 Set the problem name. More...
 

Boundary conditions and sources defining the problem

auto boundaryTypes (const Element &element, const SubControlVolume &scv) const
 Specifies which kind of boundary condition should be used for which equation on a given boundary segment. More...
 
auto boundaryTypes (const Element &element, const SubControlVolumeFace &scvf) const
 Specifies which kind of boundary condition should be used for which equation on a given boundary segment. More...
 
BoundaryTypes boundaryTypesAtPos (const GlobalPosition &globalPos) const
 Specifies which kind of boundary condition should be used for which equation on a given boundary segment. More...
 
PrimaryVariables dirichlet (const Element &element, const SubControlVolumeFace &scvf) const
 Evaluate the boundary conditions for a dirichlet control volume face. More...
 
PrimaryVariables dirichlet (const Element &element, const SubControlVolume &scv) const
 Evaluate the boundary conditions for a dirichlet control volume. More...
 
PrimaryVariables dirichletAtPos (const GlobalPosition &globalPos) const
 Evaluate the boundary conditions for a dirichlet control volume. More...
 
template<class ElementVolumeVariables , class ElementFluxVariablesCache >
NumEqVector neumann (const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const ElementFluxVariablesCache &elemFluxVarsCache, const SubControlVolumeFace &scvf) const
 Evaluate the boundary conditions for a neumann boundary segment. More...
 
NumEqVector neumannAtPos (const GlobalPosition &globalPos) const
 Evaluate the boundary conditions for a neumann boundary segment. More...
 
template<class ElementVolumeVariables >
NumEqVector source (const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const SubControlVolume &scv) const
 Evaluate the source term for all phases within a given sub-control-volume. More...
 
NumEqVector sourceAtPos (const GlobalPosition &globalPos) const
 Evaluate the source term for all phases within a given sub-control-volume. More...
 
void addPointSources (std::vector< PointSource > &pointSources) const
 Applies a vector of point sources. The point sources are possibly solution dependent. More...
 
template<class ElementVolumeVariables >
void pointSource (PointSource &source, const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const SubControlVolume &scv) const
 Evaluate the point sources (added by addPointSources) for all phases within a given sub-control-volume. More...
 
void pointSourceAtPos (PointSource &pointSource, const GlobalPosition &globalPos) const
 Evaluate the point sources (added by addPointSources) for all phases within a given sub-control-volume. More...
 
template<class MatrixBlock , class VolumeVariables >
void addSourceDerivatives (MatrixBlock &block, const Element &element, const FVElementGeometry &fvGeometry, const VolumeVariables &volVars, const SubControlVolume &scv) const
 Add source term derivative to the Jacobian. More...
 
template<class ElementVolumeVariables >
NumEqVector scvPointSources (const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &elemVolVars, const SubControlVolume &scv) const
 Adds contribution of point sources for a specific sub control volume to the values. Caution: Only overload this method in the implementation if you know what you are doing. More...
 
void computePointSourceMap ()
 Compute the point source map, i.e. which scvs have point source contributions. More...
 
const PointSourceMap & pointSourceMap () const
 Get the point source map. It stores the point sources per scv. More...
 
template<class SolutionVector >
void applyInitialSolution (SolutionVector &sol) const
 Applies the initial solution for all degrees of freedom of the grid. More...
 
template<class Entity >
PrimaryVariables initial (const Entity &entity) const
 Evaluate the initial value for a entity. More...
 
PrimaryVariables initialAtPos (const GlobalPosition &globalPos) const
 Evaluate the initial value for a control volume. More...
 
const GridGeometry & gridGeometry () const
 The finite volume grid geometry. More...
 
const std::string & paramGroup () const
 The parameter group in which to retrieve runtime parameters. More...
 
static constexpr bool enableInternalDirichletConstraints ()
 If internal Dirichlet constraints are enabled Enables / disables internal (non-boundary) Dirichlet constraints. If this is overloaded to return true, the assembler calls problem.hasInternalDirichletConstraint(element, scv). This means you have to implement the following member function. More...
 
Implementation & asImp_ ()
 Returns the implementation of the problem (i.e. static polymorphism) More...
 
const Implementation & asImp_ () const
 Returns the implementation of the problem (i.e. static polymorphism) More...
 

Member Typedef Documentation

◆ SpatialParams

template<class TypeTag >
using Dumux::ShallowWaterProblem< TypeTag >::SpatialParams = GetPropType<TypeTag, Properties::SpatialParams>

Constructor & Destructor Documentation

◆ ShallowWaterProblem() [1/2]

template<class TypeTag >
Dumux::ShallowWaterProblem< TypeTag >::ShallowWaterProblem ( std::shared_ptr< const GridGeometry >  gridGeometry,
std::shared_ptr< SpatialParams spatialParams,
const std::string &  paramGroup = "" 
)
inline
Parameters
gridGeometryThe finite volume grid geometry
spatialParamsThe spatial parameter class
paramGroupThe parameter group in which to look for runtime parameters first (default is "")

◆ ShallowWaterProblem() [2/2]

template<class TypeTag >
Dumux::ShallowWaterProblem< TypeTag >::ShallowWaterProblem ( std::shared_ptr< const GridGeometry >  gridGeometry,
const std::string &  paramGroup = "" 
)
inline
Parameters
gridGeometryThe finite volume grid geometry
paramGroupThe parameter group in which to look for runtime parameters first (default is "")

Member Function Documentation

◆ addPointSources()

template<class TypeTag >
void Dumux::FVProblem< TypeTag >::addPointSources ( std::vector< PointSource > &  pointSources) const
inlineinherited
Parameters
pointSourcesA vector of PointSource s that contain source values for all phases and space positions.

For this method, the values method of the point source has to return the absolute rate values in units \( [ \textnormal{unit of conserved quantity} / s ] \). Positive values mean that the conserved quantity is created, negative ones mean that it vanishes. E.g. for the mass balance that would be a mass rate in \( [ kg / s ] \).

◆ addSourceDerivatives()

template<class TypeTag >
template<class MatrixBlock , class VolumeVariables >
void Dumux::FVProblem< TypeTag >::addSourceDerivatives ( MatrixBlock &  block,
const Element &  element,
const FVElementGeometry &  fvGeometry,
const VolumeVariables &  volVars,
const SubControlVolume &  scv 
) const
inlineinherited
Note
Only needed in case of analytic differentiation and solution dependent sources

◆ applyInitialSolution()

template<class TypeTag >
template<class SolutionVector >
void Dumux::FVProblem< TypeTag >::applyInitialSolution ( SolutionVector &  sol) const
inlineinherited
Parameters
solthe initial solution vector

◆ asImp_() [1/2]

template<class TypeTag >
Implementation & Dumux::FVProblem< TypeTag >::asImp_ ( )
inlineprotectedinherited

◆ asImp_() [2/2]

template<class TypeTag >
const Implementation & Dumux::FVProblem< TypeTag >::asImp_ ( ) const
inlineprotectedinherited

◆ boundaryTypes() [1/2]

template<class TypeTag >
auto Dumux::FVProblem< TypeTag >::boundaryTypes ( const Element &  element,
const SubControlVolume &  scv 
) const
inlineinherited
Parameters
elementThe finite element
scvThe sub control volume

◆ boundaryTypes() [2/2]

template<class TypeTag >
auto Dumux::FVProblem< TypeTag >::boundaryTypes ( const Element &  element,
const SubControlVolumeFace &  scvf 
) const
inlineinherited
Parameters
elementThe finite element
scvfThe sub control volume face

◆ boundaryTypesAtPos()

template<class TypeTag >
BoundaryTypes Dumux::FVProblem< TypeTag >::boundaryTypesAtPos ( const GlobalPosition &  globalPos) const
inlineinherited
Parameters
globalPosThe position of the finite volume in global coordinates

As a default, i.e. if the user's problem does not overload any boundaryTypes method set Dirichlet boundary conditions everywhere for all primary variables

◆ computePointSourceMap()

template<class TypeTag >
void Dumux::FVProblem< TypeTag >::computePointSourceMap ( )
inlineinherited
Note
Call this on the problem before assembly if you want to enable point sources set via the addPointSources member function.

◆ dirichlet() [1/2]

template<class TypeTag >
PrimaryVariables Dumux::FVProblem< TypeTag >::dirichlet ( const Element &  element,
const SubControlVolume &  scv 
) const
inlineinherited
Parameters
elementThe finite element
scvthe sub control volume
Note
used for cell-centered discretization schemes

◆ dirichlet() [2/2]

template<class TypeTag >
PrimaryVariables Dumux::FVProblem< TypeTag >::dirichlet ( const Element &  element,
const SubControlVolumeFace &  scvf 
) const
inlineinherited
Parameters
elementThe finite element
scvfthe sub control volume face
Note
used for cell-centered discretization schemes

◆ dirichletAtPos()

template<class TypeTag >
PrimaryVariables Dumux::FVProblem< TypeTag >::dirichletAtPos ( const GlobalPosition &  globalPos) const
inlineinherited
Parameters
globalPosThe position of the center of the finite volume for which the dirichlet condition ought to be set in global coordinates

◆ enableInternalDirichletConstraints()

template<class TypeTag >
static constexpr bool Dumux::FVProblem< TypeTag >::enableInternalDirichletConstraints ( )
inlinestaticconstexprinherited

std::bitset<N> hasInternalDirichletConstraint(const Element& element, const SubControlVolume& scv) const;

where N is the number of equations and where the return value defines for each equation if the corresponding dof associated with the element/scv pair is constraint. If true is returned for a dof, the assembler calls problem.internalDirichlet(element, scv). This means you have to additionally implement the following member function

PrimaryVariables internalDirichlet(const Element& element, const SubControlVolume& scv) const;

which returns the enforced Dirichlet values the dof associated with the element/scv pair.

◆ gridGeometry()

template<class TypeTag >
const GridGeometry & Dumux::FVProblem< TypeTag >::gridGeometry ( ) const
inlineinherited

◆ initial()

template<class TypeTag >
template<class Entity >
PrimaryVariables Dumux::FVProblem< TypeTag >::initial ( const Entity &  entity) const
inlineinherited
Parameters
entityThe dof entity

◆ initialAtPos()

template<class TypeTag >
PrimaryVariables Dumux::FVProblem< TypeTag >::initialAtPos ( const GlobalPosition &  globalPos) const
inlineinherited
Parameters
globalPosThe global position

◆ name()

template<class TypeTag >
const std::string & Dumux::FVProblem< TypeTag >::name ( ) const
inlineinherited

This is used as a prefix for files generated by the simulation. It could be either overwritten by the problem files, or simply declared over the setName() function in the application file.

◆ neumann()

template<class TypeTag >
template<class ElementVolumeVariables , class ElementFluxVariablesCache >
NumEqVector Dumux::FVProblem< TypeTag >::neumann ( const Element &  element,
const FVElementGeometry &  fvGeometry,
const ElementVolumeVariables &  elemVolVars,
const ElementFluxVariablesCache &  elemFluxVarsCache,
const SubControlVolumeFace &  scvf 
) const
inlineinherited

This is the method for the case where the Neumann condition is potentially solution dependent

Parameters
elementThe finite element
fvGeometryThe finite-volume geometry
elemVolVarsAll volume variables for the element
elemFluxVarsCacheFlux variables caches for all faces in stencil
scvfThe sub control volume face

Negative values mean influx. E.g. for the mass balance that would be the mass flux in \( [ kg / (m^2 \cdot s)] \).

◆ neumannAtPos()

template<class TypeTag >
NumEqVector Dumux::FVProblem< TypeTag >::neumannAtPos ( const GlobalPosition &  globalPos) const
inlineinherited
Parameters
globalPosThe position of the boundary face's integration point in global coordinates

Negative values mean influx. E.g. for the mass balance that would be the mass flux in \( [ kg / (m^2 \cdot s)] \).

As a default, i.e. if the user's problem does not overload any neumann method return no-flow Neumann boundary conditions at all Neumann boundaries

◆ paramGroup()

template<class TypeTag >
const std::string & Dumux::FVProblem< TypeTag >::paramGroup ( ) const
inlineinherited

◆ pointSource()

template<class TypeTag >
template<class ElementVolumeVariables >
void Dumux::FVProblem< TypeTag >::pointSource ( PointSource &  source,
const Element &  element,
const FVElementGeometry &  fvGeometry,
const ElementVolumeVariables &  elemVolVars,
const SubControlVolume &  scv 
) const
inlineinherited

This is the method for the case where the point source is solution dependent

Parameters
sourceA single point source
elementThe finite element
fvGeometryThe finite-volume geometry
elemVolVarsAll volume variables for the element
scvThe sub control volume

For this method, the values() method of the point sources returns the absolute conserved quantity rate generated or annihilate in units \( [ \textnormal{unit of conserved quantity} / s ] \). Positive values mean that the conserved quantity is created, negative ones mean that it vanishes. E.g. for the mass balance that would be a mass rate in \( [ kg / s ] \).

◆ pointSourceAtPos()

template<class TypeTag >
void Dumux::FVProblem< TypeTag >::pointSourceAtPos ( PointSource &  pointSource,
const GlobalPosition &  globalPos 
) const
inlineinherited

This is the method for the case where the point source is space dependent

Parameters
pointSourceA single point source
globalPosThe point source position in global coordinates

For this method, the values() method of the point sources returns the absolute conserved quantity rate generated or annihilate in units \( [ \textnormal{unit of conserved quantity} / s ] \). Positive values mean that the conserved quantity is created, negative ones mean that it vanishes. E.g. for the mass balance that would be a mass rate in \( [ kg / s ] \).

◆ pointSourceMap()

template<class TypeTag >
const PointSourceMap & Dumux::FVProblem< TypeTag >::pointSourceMap ( ) const
inlineinherited

◆ scvPointSources()

template<class TypeTag >
template<class ElementVolumeVariables >
NumEqVector Dumux::FVProblem< TypeTag >::scvPointSources ( const Element &  element,
const FVElementGeometry &  fvGeometry,
const ElementVolumeVariables &  elemVolVars,
const SubControlVolume &  scv 
) const
inlineinherited

◆ setName()

template<class TypeTag >
void Dumux::FVProblem< TypeTag >::setName ( const std::string &  newName)
inlineinherited
Parameters
newNameThe problem's name

◆ source()

template<class TypeTag >
template<class ElementVolumeVariables >
NumEqVector Dumux::FVProblem< TypeTag >::source ( const Element &  element,
const FVElementGeometry &  fvGeometry,
const ElementVolumeVariables &  elemVolVars,
const SubControlVolume &  scv 
) const
inlineinherited

This is the method for the case where the source term is potentially solution dependent and requires some quantities that are specific to the fully-implicit method.

Parameters
elementThe finite element
fvGeometryThe finite-volume geometry
elemVolVarsAll volume variables for the element
scvThe sub control volume

For this method, the return parameter stores the conserved quantity rate generated or annihilate per volume unit. Positive values mean that the conserved quantity is created, negative ones mean that it vanishes. E.g. for the mass balance that would be a mass rate in \( [ kg / (m^3 \cdot s)] \).

◆ sourceAtPos()

template<class TypeTag >
NumEqVector Dumux::FVProblem< TypeTag >::sourceAtPos ( const GlobalPosition &  globalPos) const
inlineinherited
Parameters
globalPosThe position of the center of the finite volume for which the source term ought to be specified in global coordinates

For this method, the values parameter stores the conserved quantity rate generated or annihilate per volume unit. Positive values mean that the conserved quantity is created, negative ones mean that it vanishes. E.g. for the mass balance that would be a mass rate in \( [ kg / (m^3 \cdot s)] \).

As a default, i.e. if the user's problem does not overload any source method return 0.0 (no source terms)

◆ spatialParams()

template<class TypeTag >
const SpatialParams & Dumux::ShallowWaterProblem< TypeTag >::spatialParams ( ) const
inline

The documentation for this class was generated from the following file: