A gaseous phase consisting of a single component.
#include <dumux/material/fluidsystems/1pgas.hh>
Public Types | |
using | Component = ComponentT |
using | ParameterCache = NullParameterCache |
using | Scalar = Scalar |
export the scalar type More... | |
Static Public Member Functions | |
static void | init () |
Initialize the fluid system's static parameters generically. More... | |
static std::string | phaseName (int phaseIdx=0) |
Return the human readable name of a fluid phase. More... | |
static std::string | componentName (int compIdx=0) |
A human readable name for the component. More... | |
static std::string | name () |
A human readable name for the component. More... | |
static constexpr bool | isMiscible () |
There is only one phase, so not mass transfer between phases can occur. More... | |
static constexpr bool | isGas (int phaseIdx=0) |
Returns whether the fluid is gaseous. More... | |
static constexpr bool | isIdealMixture (int phaseIdx=0) |
Returns true if and only if a fluid phase is assumed to be an ideal mixture. More... | |
static constexpr bool | isCompressible (int phaseIdx=0) |
Returns true if the fluid is assumed to be compressible. More... | |
static constexpr bool | isIdealGas (int phaseIdx=0) |
Returns true if the fluid is assumed to be an ideal gas. More... | |
static constexpr bool | viscosityIsConstant (int phaseIdx) |
Returns true if and only if a fluid phase is assumed to have a constant viscosity. More... | |
static Scalar | molarMass (int compIdx=0) |
The mass in \(\mathrm{[kg]}\) of one mole of the component. More... | |
static Scalar | criticalTemperature (int compIdx=0) |
Returns the critical temperature in \(\mathrm{[K]}\) of the component. More... | |
static Scalar | criticalPressure (int compIdx=0) |
Returns the critical pressure in \(\mathrm{[Pa]}\) of the component. More... | |
static Scalar | tripleTemperature (int compIdx=0) |
Returns the temperature in \(\mathrm{[K]}\) at the component's triple point. More... | |
static Scalar | triplePressure (int compIdx=0) |
Returns the pressure in \(\mathrm{[Pa]}\) at the component's triple point. More... | |
static Scalar | vaporPressure (Scalar T) |
The vapor pressure in \(\mathrm{[Pa]}\) of the component at a given temperature. More... | |
static Scalar | density (Scalar temperature, Scalar pressure) |
The density \(\mathrm{[kg/m^3]}\) of the component at a given pressure and temperature. More... | |
template<class FluidState > | |
static Scalar | density (const FluidState &fluidState, const int phaseIdx) |
Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase. More... | |
static Scalar | molarDensity (Scalar temperature, Scalar pressure) |
The molar density \(\rho_{mol,\alpha}\) of a fluid phase \(\alpha\) in \(\mathrm{[mol/m^3]}\). More... | |
template<class FluidState > | |
static Scalar | molarDensity (const FluidState &fluidState, const int phaseIdx) |
Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More... | |
static Scalar | pressure (Scalar temperature, Scalar density) |
The pressure \(\mathrm{[Pa]}\) of the component at a given density and temperature. More... | |
static const Scalar | enthalpy (Scalar temperature, Scalar pressure) |
Specific enthalpy \(\mathrm{[J/kg]}\) of the pure component as a gas. More... | |
template<class FluidState > | |
static Scalar | enthalpy (const FluidState &fluidState, const int phaseIdx) |
Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More... | |
static const Scalar | internalEnergy (Scalar temperature, Scalar pressure) |
Specific internal energy \(\mathrm{[J/kg]}\) of the pure component as a gas. More... | |
static Scalar | viscosity (Scalar temperature, Scalar pressure) |
The dynamic viscosity \(\mathrm{[Pa s]}\) of the pure component at a given pressure and temperature. More... | |
template<class FluidState > | |
static Scalar | viscosity (const FluidState &fluidState, const int phaseIdx) |
Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More... | |
template<class FluidState > | |
static Scalar | fugacityCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx) |
Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase. More... | |
template<class FluidState > | |
static Scalar | diffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIdx) |
Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More... | |
template<class FluidState > | |
static Scalar | binaryDiffusionCoefficient (const FluidState &fluidState, int phaseIdx, int compIIdx, int compJIdx) |
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More... | |
static Scalar | thermalConductivity (Scalar temperature, Scalar pressure) |
Thermal conductivity of the fluid \(\mathrm{[W/(m K)]}\). More... | |
template<class FluidState > | |
static Scalar | thermalConductivity (const FluidState &fluidState, const int phaseIdx) |
Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\). More... | |
static Scalar | heatCapacity (Scalar temperature, Scalar pressure) |
Specific isobaric heat capacity of the fluid \(\mathrm{[J/(kg K)]}\). More... | |
template<class FluidState > | |
static Scalar | heatCapacity (const FluidState &fluidState, const int phaseIdx) |
Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More... | |
static constexpr bool | isTracerFluidSystem () |
Some properties of the fluid system. More... | |
static constexpr int | getMainComponent (int phaseIdx) |
Get the main component of a given phase if possible. More... | |
static Scalar | density (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Calculate the density \(\mathrm{[kg/m^3]}\) of a fluid phase. More... | |
static Scalar | molarDensity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Calculate the molar density \(\mathrm{[mol/m^3]}\) of a fluid phase. More... | |
static Scalar | fugacityCoefficient (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx, int compIdx) |
Calculate the fugacity coefficient \(\mathrm{[Pa]}\) of an individual component in a fluid phase. More... | |
static Scalar | viscosity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Calculate the dynamic viscosity of a fluid phase \(\mathrm{[Pa*s]}\). More... | |
static Scalar | diffusionCoefficient (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx, int compIdx) |
Calculate the binary molecular diffusion coefficient for a component in a fluid phase \(\mathrm{[mol^2 * s / (kg*m^3)]}\). More... | |
static Scalar | binaryDiffusionCoefficient (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx, int compIIdx, int compJIdx) |
Given a phase's composition, temperature and pressure, return the binary diffusion coefficient \(\mathrm{[m^2/s]}\) for components \(\mathrm{i}\) and \(\mathrm{j}\) in this phase. More... | |
static Scalar | enthalpy (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Given a phase's composition, temperature, pressure and density, calculate its specific enthalpy \(\mathrm{[J/kg]}\). More... | |
static Scalar | thermalConductivity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Thermal conductivity \(\lambda_\alpha \) of a fluid phase \(\mathrm{[W/(m K)]}\). More... | |
static Scalar | heatCapacity (const FluidState &fluidState, const ParameterCache ¶mCache, int phaseIdx) |
Specific isobaric heat capacity \(c_{p,\alpha}\) of a fluid phase \(\mathrm{[J/(kg*K)]}\). More... | |
Static Public Attributes | |
static constexpr int | numPhases = 1 |
Number of phases in the fluid system. More... | |
static constexpr int | numComponents = 1 |
Number of components in the fluid system. More... | |
static constexpr int | phase0Idx = 0 |
index of the only phase More... | |
static constexpr int | comp0Idx = 0 |
index of the only component More... | |
using Dumux::FluidSystems::OnePGas< Scalar, ComponentT >::Component = ComponentT |
using Dumux::FluidSystems::OnePGas< Scalar, ComponentT >::ParameterCache = NullParameterCache |
|
inherited |
|
inlinestaticinherited |
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
compIIdx | Index of the component i |
compJIdx | Index of the component j |
|
inlinestatic |
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
compIIdx | Index of the component i |
compJIdx | Index of the component j |
|
inlinestatic |
compIdx | The index of the component to consider |
|
inlinestatic |
|
inlinestatic |
|
inlinestatic |
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
|
inlinestaticinherited |
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
temperature | The given temperature \(\mathrm{[K]}\) |
pressure | The given pressure \(\mathrm{[Pa]}\) |
|
inlinestaticinherited |
Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law
\[ J = - D \nabla \mu_\kappa \]
where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation
\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]
where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component |
|
inlinestatic |
Molecular diffusion of a component \(\mathrm{\kappa}\) is caused by a gradient of the chemical potential and follows the law
\[ J = - D \nabla \mu_\kappa \]
where \(\mathrm{\mu_\kappa}\) is the component's chemical potential, \(\mathrm{D}\) is the diffusion coefficient and \(\mathrm{J}\) is the diffusive flux. \(\mathrm{\mu_\kappa}\) is connected to the component's fugacity \(\mathrm{f_\kappa}\) by the relation
\[ \mu_\kappa = R T_\alpha \mathrm{ln} \frac{f_\kappa}{p_\alpha} \]
where \(\mathrm{p_\alpha}\) and \(\mathrm{T_\alpha}\) are the fluid phase' pressure and temperature.
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component |
|
inlinestatic |
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
|
inlinestaticinherited |
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
temperature | The given temperature \(\mathrm{[K]}\) |
pressure | The given pressure \(\mathrm{[Pa]}\) |
|
inlinestaticinherited |
The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation
\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component |
|
inlinestatic |
The fugacity coefficient \(\mathrm{\phi^\kappa_\alpha}\) is connected to the fugacity \(\mathrm{f^\kappa_\alpha}\) and the component's mole fraction \(\mathrm{x^\kappa_\alpha}\) by means of the relation
\[ f^\kappa_\alpha = \phi^\kappa_\alpha\;x^\kappa_\alpha\;p_\alpha \]
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
compIdx | Index of the component |
|
inlinestaticconstexprinherited |
phaseIdx | The index of the fluid phase to consider |
|
inlinestatic |
fluidState | represents all relevant thermodynamic quantities of a fluid system |
phaseIdx | Index of the fluid phase |
Given a fluid state, an up-to-date parameter cache and a phase index, this method computes the isobaric heat capacity \(c_{p,\alpha}\) of the fluid phase. The isobaric heat capacity is defined as the partial derivative of the specific enthalpy \(h_\alpha\) to the fluid pressure \(p_\alpha\):
\( c_{p,\alpha} = \frac{\partial h_\alpha}{\partial p_\alpha} \)
|
inlinestaticinherited |
Given a fluid state, an up-to-date parameter cache and a phase index, this method computes the isobaric heat capacity \(c_{p,\alpha}\) of the fluid phase. The isobaric heat capacity is defined as the partial derivative of the specific enthalpy \(h_\alpha\) to the fluid pressure \(p_\alpha\):
\( c_{p,\alpha} = \frac{\partial h_\alpha}{\partial p_\alpha} \)
fluidState | represents all relevant thermodynamic quantities of a fluid system |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
temperature | The given temperature \(\mathrm{[K]}\) |
pressure | The given pressure \(\mathrm{[Pa]}\) |
|
inlinestatic |
|
inlinestatic |
temperature | The given temperature \(\mathrm{[K]}\) |
pressure | The given pressure \(\mathrm{[Pa]}\) |
|
inlinestaticconstexpr |
|
inlinestaticconstexpr |
|
inlinestaticconstexpr |
|
inlinestaticconstexpr |
We define an ideal mixture as a fluid phase where the fugacity coefficients of all components times the pressure of the phase are independent on the fluid composition. This assumption is true if only a single component is involved. If you are unsure what this function should return, it is safe to return false. The only damage done will be (slightly) increased computation times in some cases.
phaseIdx | The index of the fluid phase to consider |
|
inlinestaticconstexpr |
|
inlinestaticconstexprinherited |
If the fluid system only contains tracer components
|
inlinestatic |
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
|
inlinestaticinherited |
The molar density is defined by the mass density \(\rho_\alpha\) and the component molar mass \(M_\alpha\) after
\[\rho_{mol,\alpha} = \frac{\rho_\alpha}{M_\alpha} \;.\]
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
The molar density is defined by the mass density \(\rho_\alpha\) and the component molar mass \(M_\alpha\):
\[\rho_{mol,\alpha} = \frac{\rho_\alpha}{M_\alpha} \;.\]
temperature | The temperature at which to evaluate the molar density |
pressure | The pressure at which to evaluate the molar density |
|
inlinestatic |
|
inlinestatic |
|
inlinestatic |
phaseIdx | The index of the fluid phase to consider |
|
inlinestatic |
temperature | The given temperature \(\mathrm{[K]}\) |
density | The given density \(\mathrm{[kg/m^3]}\) |
|
inlinestatic |
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
|
inlinestaticinherited |
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
temperature | The given temperature \(\mathrm{[K]}\) |
pressure | The given pressure \(\mathrm{[Pa]}\) |
|
inlinestatic |
|
inlinestatic |
|
inlinestatic |
T | temperature \(\mathrm{[K]}\) |
|
inlinestatic |
fluidState | The fluid state |
phaseIdx | Index of the fluid phase |
|
inlinestaticinherited |
fluidState | The fluid state |
paramCache | mutable parameters |
phaseIdx | Index of the fluid phase |
|
inlinestatic |
temperature | The given temperature \(\mathrm{[K]}\) |
pressure | The given pressure \(\mathrm{[Pa]}\) |
|
inlinestaticconstexpr |
phaseIdx | The index of the fluid phase to consider |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |
|
staticconstexpr |