
Handbook

Version 3.0

Lehrstuhl für Hydromechanik und Hydrosystemmodellierung,

Universität Stuttgart, Paffenwaldring 61, D-70569 Stuttgart, Germany

http://dumux.org

http://dumux.org

Contents

1 Introduction 3

2 Quick Start 5
2.1 Prerequisites . 5
2.2 Obtaining code and configuring all modules with a script 5

3 Detailed Installation, Documentation, and Externals 7
3.1 Obtaining Source Code for DUNE and DuMux . 7
3.2 Build of DUNE and DuMux . 9
3.3 The First Run of a Test Application . 9
3.4 Building Documentation . 10
3.5 External Libraries and Modules . 10

4 Learning to use DuMux 13
4.1 Further Practice . 13

5 Overview and Infrastructure 15
5.1 Directory Structure . 15
5.2 Setup of new Folders and new Tests . 15
5.3 Parameters in DuMux . 17
5.4 Restart DuMux Simulations . 19
5.5 Developing DuMux . 19
5.6 External Tools . 21
5.7 Assembling the linear system . 22

6 Advanced DuMux – Detailed Instructions 24
6.1 Physical Basics . 24
6.2 Temporal Discretization and Solution Strategies . 27
6.3 Spatial Discretization . 28
6.4 Steps of a DuMux Simulation . 36
6.5 Property System . 37
6.6 Input and Output . 43
6.7 Parallel Computation . 46

2

1 Introduction

DuMux aims to be a generic framework for the simulation of multiphase fluid flow and transport
processes in porous media using continuum mechanical approaches. At the same time, DuMux aims
to deliver top-notch computational performance, high flexibility, a sound software architecture and
the ability to run on anything from single processor systems to highly parallel supercomputers with
specialized hardware architectures.

The means to achieve these somewhat contradictory goals are the thorough use of object-oriented
design in conjunction with template programming. These requirements call for C++ as the implemen-
tation language.

One of the more complex issues when dealing with parallel continuum models is managing the grids
used for the spatial discretization of the physical model. To date, no generic and efficient approach
exists for all possible cases, so DuMux is build on top of DUNE, the Distributed and Unified Numerics
Environment [9]. DUNE provides a generic interface to many existing grid management libraries such
as UG [11], ALUGrid [4, 3] and a few more. DUNE also extensively uses template programming in
order to achieve minimal overhead when accessing the underlying grid libraries1.

Figure 1.1: A high-level overview of DUNE’s design is available on the project’s web site [9].

DUNE’s grid interface is independent of the spatial dimension of the underlying grid. For this
purpose, it uses the concept of co-dimensional entities. Roughly speaking, an entity of co-dimension
0 constitutes a cell, co-dimension 1 entities are faces between cells, co-dimension 2 are edges, and so
on until co-dimension n which are the cell’s vertices. The DUNE grid interface generally assumes that
all entities are convex polytopes, which means that it must be possible to express each entity as the
convex hull of a set of vertices. For the sake of efficiency, all entities are further expressed in terms of
so-called reference elements which are transformed to the actual spatial incarnation within the grid by
a so-called geometry function. Here, a reference element for an entity can be thought of as a prototype
for the actual grid entity. For example, if we used a grid which applied hexahedrons as cells, the

1In fact, the performance penalty resulting from the use of DUNE’s grid interface is usually negligible [7].

3

1 Introduction

reference element for each cell would be the unit cube [0, 1]3 and the geometry function would scale
and translate the cube so that it matches the grid’s cell. A quick overview of reference elements and the
related numbering can be obtained from the DUNE cheat sheet (https://www.dune-project.org/
pdf/dune-cheat-sheet.pdf). For a more thorough description of DUNE’s grid definition, see [5].

In addition to the grid interface, DUNE also provides quite a few additional modules, of which the
dune-localfunctions and dune-istl modules are the most relevant in the context of this handbook.
dune-localfunctions provides a set of generic finite element shape functions, while dune-istl is the
Iterative Solver Template Library and provides generic, highly optimized linear algebra routines for
solving the generated systems.

DuMux comes in form of an additional module dumux. It depends on the DUNE core modules
dune-common, dune-grid, dune-istl, and dune-localfunctions. The main intention of DuMux is
to provide a framework for an easy and efficient implementation of new physical models for porous
media flow problems, ranging from problem formulation and the selection of spatial and temporal
discretization schemes as well as nonlinear solvers, to general concepts for model coupling. Moreover,
DuMux includes ready to use numerical models and a few example applications.

This is the handbook to a new major version update of DuMux: version 3.0. The release contains
considerable improvements and many new features compared to the 2.x versions. Due to the major up-
date, backwards compatibility with the last release 2.12 cannot be assured. To facilitate the transition
for our users, we have created a git wiki entry describing how to update programs from version 2.12
to version 3.0. It is available online: https://git.iws.uni-stuttgart.de/dumux-repositories/

dumux/wikis/Updating-programs-from-version-2.12-to-version-3.0. The guide leads in detail
through the interface changes from 2.12 to 3.0, concerning the Problem class, the SpatialParams class,
the Parameters and Properties, i.e. the main user interface. Starting with version 3.0.0, all minor
version updates will certainly be backward compatible again with at least the last minor version. We
highly recommend all our users to transition with us to DuMux-3.0 and wish everyone a brand-new
and exciting simulation experience.

4

https://www.dune-project.org/pdf/dune-cheat-sheet.pdf
https://www.dune-project.org/pdf/dune-cheat-sheet.pdf
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/wikis/Updating-programs-from-version-2.12-to-version-3.0
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/wikis/Updating-programs-from-version-2.12-to-version-3.0

2 Quick Start

In this chapter we provide a quick start guide to your first DuMux experience, including an install
script with all necessary instructions on how to very quickly install the latest release version of DuMux.
You should have a recent working Linux environment. If you need more information, please have a
look at the detailed installation instructions in the next chapter 3.

2.1 Prerequisites

For this quick start guide the following software packages are required:

• GitLab client

• A standard compliant C++ compiler supporting C++11 and the C++14 feature set of GCC
4.9. We support GCC 4.9 or newer and Clang 3.8 or newer.

• CMake 2.8.12 or newer

• pkg-config

• ParaView (to visualize the results)

2.2 Obtaining code and configuring all modules with a script

We provide you with a shell-script installDumux.sh that facilitates setting up a DUNE/DuMux

directory tree and configures all modules with CMake. Copy the following lines into a text file named
installDumux.sh:

1 # One click install script for dumux

2

3 # make a new folder containing everything

4 mkdir $(pwd)/DUMUX

5 cd DUMUX

6

7 echo "***"

8 echo "(1/2) Cloning repositories. This may take a while.

9 Make sure to be connected to the internet."

10 echo "***"

11 # the core modules

12 for MOD in common geometry grid localfunctions istl; do

13 git clone -b releases/2.6 https://gitlab.dune-project.org/core/dune-$MOD.git

14 done

15

16 # dumux

17 git clone -b releases/3.0 https://git.iws.uni-stuttgart.de/dumux-repositories/dumux.git

18

19 if [$? -ne 0]; then

5

2 Quick Start

20 echo "***"

21 echo "Failed to clone the repositories."

22 echo "***"

23 exit $?

24 fi

25

26 echo "***"

27 echo "(2/2) Configure dune modules and dumux. Build the

28 dune libaries. This may take several minutes."

29 echo "***"

30 # run build

31 ./dune-common/bin/dunecontrol --opts=dumux/cmake.opts all

32 #

33 if [$? -ne 0]; then

34 echo "***"

35 echo "Failed to build the dune libaries."

36 echo "***"

37 exit $?

38 fi

39

40 # echo result

41 echo "***"

42 echo "Successfully configured and built dune and dumux."

43 echo "Please run the test_dumux.sh script to confirm everything works."

44 echo "***"

Place the installDumux.sh script in the directory where you want to install DuMux and DUNE
(a single root folder DUMUX will be produced, so you do not need to provide one). Run the script by
typing into the terminal: ./installDumux.sh

Configuring DUNE and DuMux is done by the command-line script dunecontrol using optimized
configure options, see the line entitled # run build in the installDumux.sh script. More details
about the build-system can be found in section 3.2.

2.2.1 A first test run of DuMux

When the installDumux.sh script from the subsection above has run successfully, you can execute
a second script that will compile and run a simple one-phase ground water flow example and will
visualize the result using ParaView. The test script can be obtained by copying the following lines
into a text file named test dumux.sh that has to be located in the same directory as the installation
script.

1 cd DUMUX/dumux/build-cmake/test/porousmediumflow/1p/implicit/isothermal

2 make -B test_1p_tpfa

3 ./test_1p_tpfa params.input

4 paraview *pvd

The script test dumux.sh can be executed by typing into the terminal: ./test dumux.sh. If every-
thing works fine, a ParaView window with the result should open automatically, showing the initial
conditions. Advance ParaView to the next frame (green arrow button) and rescale to data range to
admire the colorful pressure distribution.

6

3 Detailed Installation, Documentation, and
Externals

In this chapter, we provide more detailed information on how to obtain source code, build and test
DUNE and DuMux. It further contains information on how to build the documentation and about
external libraries and modules. Installing DuMux means that you first unpack DUNE and DuMux in
a root directory, (section 3.1). In a second step of the installation, all modules are configured with
CMake (section 3.2). After successful installation of DuMux, we guide you to start a test application,
described in section 3.3. In section 3.4 we explain how to build the DuMux documentation. Lastly,
section 3.5 provides details on optional libraries and modules.

In a technical sense DuMux is a module of DUNE. Thus, the installation procedure of DuMux is
the same as that of DUNE. Details regarding the installation of DUNE are provided on the DUNE
website [9].

3.1 Obtaining Source Code for DUNE and DuMux

The DuMux release and trunk (developer tree) are based on the most recent DUNE release 2.6, compris-
ing the core modules dune-common, dune-geometry, dune-grid, dune-istl and dune-localfunctions.
For working with DuMux, these modules are required. All DUNE modules, including the DuMux mod-
ule, get extracted into a common root directory, as it is done in an ordinary DUNE installation. We
usually name our root directory DUMUX but an arbitrary name can be chosen. Source code files for each
DUNE module are contained in their own sub-directory within the root directory. The sub-directories
for the modules are named after the module names (depending on how the modules were obtained, a
version number is added to the module name). The name of each DUNE module is defined in the file
dune.module, which is in the root directory of the respective module. This should not be changed by
the user.

Two possibilities exist to get the source code of DUNE and DuMux. Firstly, DUNE and DuMux can
be downloaded as tar files from the respective DUNE and DuMux website. They have to be extracted
as described in the next paragraph. Secondly, the most recent source code (or, more generally, any
of its previous revisions) can be obtained by direct access to the software repositories of the revision
control system. This is described in the second paragraph.

In section 2.1 we list some prerequisites for running DUNE and DuMux. Please check in said
paragraph whether you can fulfill them before continuing.

Obtaining the software by installing tar files The slightly old-fashionedly named tape-archive-file,
shortly named tar file or tarball, is a common file format for distributing collections of files contained
within these archives. The extraction from the tar files is done as follows: Download the tarballs from
the respective DUNE (version 2.6) and DuMux websites to a certain folder in your file system. Create
the common root directory, named DUMUX in the example below. Then extract the content of the tar

7

3 Detailed Installation, Documentation, and Externals

files, e. g. with the command-line program tar. This can be achieved by the following shell commands.
Replace path to tarball with the directory name where the downloaded files are actually located.
After extraction, the actual name of the dumux subdirectory is dumux-3.0 (or whatever version you
downloaded).

$ mkdir DUMUX

$ cd DUMUX

$ tar xzvf path_to_tarball_of/dune-common-2.6.0.tar.gz

$ tar xzvf path_to_tarball_of/dune-geometry-2.6.0.tar.gz

$ tar xzvf path_to_tarball_of/dune-grid-2.6.0.tar.gz

$ tar xzvf path_to_tarball_of/dune-istl-2.6.0.tar.gz

$ tar xzvf path_to_tarball_of/dune-localfunctions-2.6.0.tar.gz

$ tar xzvf path_to_tarball_of/dumux-3.0.tar.gz

Furthermore, if you wish to install the optional DUNE Grid-Howto which provides a tutorial on the
Dune grid interface, act similar.

Obtaining DUNE and DuMux from software repositories Direct access to a software revision control
system for downloading code can be of advantage later on. It is easier to keep up with code changes
and to receive important bug fixes. DUNE and DuMux use Git for their software repositories. To
access them, a Git client is needed.

In the technical language of Git, cloning a certain software version means nothing more then fetching
a local copy from the software repository and laying it out in the file system. In addition to the
software, some more files for the use of the software revision control system itself are created. If you
have developer access to DuMux, it is also possible to do the opposite, i. e. to load up a modified
revision of software into the software repository. This is usually termed as commit and push.

The installation procedure is done as follows: Create a common root directory, named e.g. DUMUX in
the lines below. Then, enter the previously created directory and check out the desired modules. As
you see below, the check-out uses two different servers for getting the sources, one for DUNE and one
for DuMux.

$ mkdir DUMUX

$ cd DUMUX

$ git clone -b releases/2.6 https://gitlab.dune-project.org/core/dune-common.git

$ git clone -b releases/2.6 https://gitlab.dune-project.org/core/dune-geometry.git

$ git clone -b releases/2.6 https://gitlab.dune-project.org/core/dune-grid.git

$ git clone -b releases/2.6 https://gitlab.dune-project.org/core/dune-istl.git

$ git clone -b releases/2.6 https://gitlab.dune-project.org/core/dune-localfunctions.git

$ git clone -b releases/3.0 https://git.iws.uni-stuttgart.de/dumux-repositories/dumux.git

The newest and maybe unstable developments of DUNE and DuMux are also provided in these
repositories and can be found in the master branch. Please check the DUNE website [9] for further
information on the DUNE development. We always try to keep up with the latest developments of
DUNE. However, the current DuMux release is based on the stable 2.6 release and it might not compile
without further adaptations using the newest versions of DUNE.

Furthermore, if you wish to install the optional DUNE Grid-Howto which provides a tutorial on the
Dune grid interface, act similar.

8

3 Detailed Installation, Documentation, and Externals

3.2 Build of DUNE and DuMux

Configuring DUNE and DuMux is done by the shell-command dunecontrol which is part of the DUNE
build system. If you are interested in more details about the build system that is used, they can be
found in the DUNE build system documentation1 and CMake’s documentation2. If something fails
during the execution of dunecontrol, feel free to report it to the DUNE or DuMux developer mailing
list, but please include error details.

It is possible to compile DuMux with nearly no explicit options to the build system. However,
for the successful compilation of DUNE and DuMux, it is currently necessary to pass the option
-fno-strict-aliasing to the C++ compiler, which is done here via a command-line argument to
dunecontrol:

$ # make sure you are in the common root directory

$./dune-common/bin/dunecontrol --configure-opts="CXXFLAGS=-fno-strict-aliasing" --use-cmake

all

Too many options can make life hard. That’s why usually option files are being used together with
dunecontrol and its sub-tools. Larger sets of options are kept in them. If you are going to compile
with modified options, the following can be a starting point:

$ # make sure you are in the common root directory

$ cp dumux/cmake.opts my-cmake.opts # create a personal version

$ gedit my-cmake.opts # optional editing the options file

$./dune-common/bin/dunecontrol --opts=my-cmake.opts all

Sometimes, it is necessary to have additional options which are specific to a package set of an
operating system or sometimes you have your own preferences. Feel free to work with your own set
of options, which may evolve over time. The option file that comes with the distribution is to be
understood more as a starting point for setting up an own customization than as something which is
fixed. The use of external libraries can make it necessary to add quite many options in an option file.
It can be helpful to give your customized option file its own name, as done above, to avoid confusing
it with the option files which came out of the distribution.

3.3 The First Run of a Test Application

The previous section showed how to install and compile DuMux. This section shall give a very brief
introduction how to run a first test application and how to visualize the first output files.

All executables are compiled in the build sub-directories of DuMux. If not specified differently in
the options file, this is build-cmake as default.

1. Enter the folder porousmediumflow/2p/implicit/incompressible.
Type make test 2p incompressible tpfa in order to compile the application
test 2p incompressible tpfa. To run the simulation, type ./test 2p incompressible tpfa

1https://www.dune-project.org/buildsystem/
2https://cmake.org/documentation/

9

https://www.dune-project.org/buildsystem/
https://cmake.org/documentation/

3 Detailed Installation, Documentation, and Externals

params.input into the console. The added params.input specifies that all important run-time
parameters (like first time step size, end of simulation and location of the grid file) can be found
in a text file in the same directory with the name params.input.

2. The simulation starts and produces some VTU output files and also a PVD file. The PVD file
can be used to examine time series and summarizes the VTU files. It is possible to stop a running
application by pressing <Ctrl><c>.

3. You can display the results using the visualization tool ParaView (or alternatively VisIt). Just
type paraview in the console and open the PVD file. On the left hand side, you can choose the
desired parameter to be displayed.

3.4 Building Documentation

The building of included documentation like this handbook requires LATEX and auxiliary tools bibtex.
One usually chooses a LATEX distribution like texlive for this purpose. It is possible to switch off the
building of the documentation by setting the switch --disable-documentation in the CONFIGURE FLAGS

of the building options, see section 3.2.

3.4.1 Doxygen

Doxygen documentation is done by specifically formatted comments integrated in the source code,
which can get extracted by the program doxygen. Beside extracting these comments, doxygen builds
up a web-browsable code structure documentation like class hierarchy of code displayed as graphs, see
http://www.stack.nl/~dimitri/doxygen/.

The Doxygen documentation of a module can be built if doxygen is installed, by running dunecontrol,
entering the build-*directory, and executing make doc. Then point your web browser to the file
MODULE BUILD DIRECTORY/doc/doxygen/html/index.html to read the generated documentation. This
should also work for other DUNE modules.

3.4.2 Handbook

To build the DuMux handbook go into the build-directory and run make doc or make 0 dumux-handbook pdf.
The pdf can then be found in MODULE BUILD DIRECTORY/doc/handbook/0 dumux-handbook.pdf.

3.5 External Libraries and Modules

The libraries described below provide additional functionality but are not generally required to run
DuMux. If you are going to use an external library, check the information provided on the DUNE
website3. If you are going to use an external DUNE module, the website on external modules4 can be
helpful.

3DUNE: External libraries, https://www.dune-project.org/doc/external-libraries/
4DUNE: External modules, https://www.dune-project.org/groups/external/

10

http://www.stack.nl/~dimitri/doxygen/
https://www.dune-project.org/doc/external-libraries/
https://www.dune-project.org/groups/external/

3 Detailed Installation, Documentation, and Externals

Installing an external library can require additional libraries which are also used by DUNE. For
some libraries, such as BLAS or MPI, multiple versions can be installed on the system. Make sure
that it uses the same library as DUNE when configuring the external library.

Some of the libraries are then compiled within that directory and are not installed in a different
place, but DUNE may need to know their location. Thus, one may have to refer to them as options for
dunecontrol, for example via the options file my-cmake.opts. Make sure you compile the required
external libraries before you run dunecontrol.

An easy way to install some of the libraries and modules given below is the installexternal.sh

script located in bin. The script has to be called from your common root directory.

3.5.1 List of External Libraries and Modules

In the following list, you can find some external modules and external libraries, and some more libraries
and tools which are prerequisites for their use.

• dune-ALUGrid: Grid library, comes as a DUNE module. The parallel version needs also a
graph partitioner, such as ParMETIS. Download: https://gitlab.dune-project.org/extensions/
dune-alugrid

• dune-foamgrid: External grid module. One- and two-dimensional grids in a physical space
of arbitrary dimension; non-manifold grids, growth, element paramterizations, and movable ver-
tices. This makes FoamGrid the grid data structure of choice for simulating structures such
as foams, discrete fracture networks, or network flow problems. Download: https://gitlab.

dune-project.org/extensions/dune-foamgrid

• opm-grid: opm-grid is a DUNE module supporting grids in a corner-point format. Download:
https://github.com/OPM/opm-grid.git

• dune-subgrid: The dune-subgrid module is a meta-grid implementation that allows to mark
elements of another hierarchical dune grid and use this sub-grid just like a regular grid. The
set of marked elements can then be accessed as a hierarchical dune grid in its own right. Dune-
Subgrid provides the full grid interface including adaptive mesh refinement. Download: https:

//git.imp.fu-berlin.de/agnumpde/dune-subgrid.git

• dune-spgrid: The DUNE module dune-spgrid provides a structured, parallel grid and supports
periodic boundary conditions. Download: https://gitlab.dune-project.org/extensions/

dune-spgrid.git

• SuperLU: External library for solving linear equations. SuperLU is a general purpose library
for the direct solution of large, sparse, non-symmetric systems of linear equations. Download:
http://crd.lbl.gov/~xiaoye/SuperLU

• UMFPack: External library for solving linear equations. It is part of SuiteSparse.

• dune-UG: External library for use as grid. UG is a toolbox for unstructured grids, released
under GPL. To build UG the tools lex/yacc or the GNU variants of flex/bison must be
provided. Download: https://gitlab.dune-project.org/staging/dune-uggrid

11

https://gitlab.dune-project.org/extensions/dune-alugrid
https://gitlab.dune-project.org/extensions/dune-alugrid
https://gitlab.dune-project.org/extensions/dune-foamgrid
https://gitlab.dune-project.org/extensions/dune-foamgrid
https://github.com/OPM/opm-grid.git
https://git.imp.fu-berlin.de/agnumpde/dune-subgrid.git
https://git.imp.fu-berlin.de/agnumpde/dune-subgrid.git
https://gitlab.dune-project.org/extensions/dune-spgrid.git
https://gitlab.dune-project.org/extensions/dune-spgrid.git
http://crd.lbl.gov/~xiaoye/SuperLU
https://gitlab.dune-project.org/staging/dune-uggrid

3 Detailed Installation, Documentation, and Externals

The following are dependencies of some of the used libraries. You will need them depending on
which modules of DUNE and which external libraries you use.

• MPI: The parallel version of DUNE and also some of the external dependencies need MPI when
they are going to be built for parallel computing. OpenMPI and MPICH in a recent version have
been reported to work.

• BLAS: SuperLU makes use of BLAS. Thus install GotoBLAS2, ATLAS, non-optimized BLAS
or BLAS provided by a chip manufacturer. Take care that the installation scripts select the
intended version of BLAS.

• METIS and ParMETIS: This are dependencies of ALUGrid and can be used with UG, if run
in parallel.

• Compilers: Beside g++, DUNE can be built with Clang from the LLVM project and Intel C++

compiler. C and Fortran compilers are needed for some external libraries. As code of different
compilers is linked together, they have to be be compatible with each other.

12

4 Learning to use DuMux

So, you’ve downloaded your very own copy of DuMux and its dependencies. You’ve run dunecontrol,
and your example “test dumux” not only compiles, but it even shows a nice simulation in ParaView.
Maybe you’ve read through parts of the handbook, and even started looking through the Doxygen
documentation. Well done. What now?

“How on earth is this going to help me solve my multi-(phase, component, scale, physics) flow and
transport problems in porous media systems?”, you begin to wonder. Don’t panic! In order to best
ease our prospective users and developers into the wonderful DuMux simulation environment, we’ve
prepared a DuMux course. This course is offered once a year over a period of 3 days at the University
of Stuttgart. If you’re looking for information on attending, subscribe to the DuMux mailing list and
stay tuned for updates: https://listserv.uni-stuttgart.de/mailman/listinfo/dumux.

“But the course won’t take place for another 6 months!” and, “I want to start developing a numerical
model of my challenging and interesting process now!”, you think. Not a problem. The course materials
are all shared online in their own git repository. A series of beginner-level exercises are explained such
that you can see how a model is developed in DuMux. As a teaser, we’ve also included a suite of
examples from hot topics we’re working on. Models exploring “Coupling free flow and porous-media
flow”, “Flow in fractured porous media” and “Fluid-solid phase change” are all introduced.

“Sounds great, but where is this material? I can’t find it within what I’ve downloaded.”, you
question. The DuMux course material is available online: https://git.iws.uni-stuttgart.de/

dumux-repositories/dumux-course.
In order to download this repository, which acts as an additional module to the DuMux base, you

can download an installation script with the following command:

$ wget https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/raw/releases/3.0/

scripts/install.sh

This script will install dumux, it’s Dune dependencies, and the dumux-course repository. Within the
directory dumux-course there are a series of exercises and slides describing the previously described
examples.

The DuMux course will be updated with each DuMux release. The above script will download the
correct version (releases/3.0) of both the dumux and dumux-course module.

4.1 Further Practice

If there is a need for further practice, we refer here to the test problems that are already implemented
in DuMux. Several examples for all models can be found in the test-directory. An overview over the
available test cases can be found in the class documentation http://www.dumux.org/documentation.

php.

13

https://listserv.uni-stuttgart.de/mailman/listinfo/dumux
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course
http://www.dumux.org/documentation.php
http://www.dumux.org/documentation.php

4 Learning to use DuMux

Another possibility to gain more experience with DuMux is the dumux-lecture module that contains
different application examples that are used in the lectures at the Department of Hydromechanics and
Modelling of Hydrosystems in Stuttgart. The dumux-lecture module can be obtained as follows:

$ git clone https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-lecture.git

The module is structured based on the different lectures:

• mm: Multiphase Modelling,

• efm: Environmental Fluid Mechanics,

• mhs: Modelling of Hydrosystems.

The majority of applications is covered in the course Multiphase Modelling (mm), while there are
also some basic examples from the courses Environmental Fluid Mechanics (efm) and Modelling of
Hydrosystems (mhs). These applications are primarily designed to enhance the understanding of
conceptualizing the governing physical processes and their implementation in a numerical simulator.
Different aspects of modeling multi-phase multi-component flow and transport processes are shown.
The lectures focus on questions like, e. g., the assignment of boundary conditions, the choice of the
appropriate physics for a given problem (which phases, which components), discretization issues, time
stepping. You can find, e. g., a comparison of different two-phase flow problems: The more simple
approach considers two immiscible fluids while components in both phases with inter-phase mass
transfer are considered in the more complex approach. All scenarios and their physical background
are explained in additional .tex-files, which are provided in sub-directories named description. The
following test cases are contained in the dumux-lecture module:

• buckleyleverett: The Buckley-Leverett Problem is a classical porous media flow show case

• co2plume: Analysis of the influence of the gravitational number on the CO2 plume

• columnxylene: A VEGAS experiment

• convectivemixing: A test case related to CO2 storage

• fuelcell

• heatpipe: A show case for two-phase two-component flow with heat fluxes

• heavyoil: Steam assisted gravity drainage (SAGD)

• henryproblem: A show case related to salt water intrusion

• mcwhorter: The McWhorter Problem is a classical porous media flow show case

• naplinfiltration: Infiltration of non-aqueous phase liquid (NAPL) into soil

• remediationscenarios: Test case for NAPL contaminated unsaturated soils

• groundwater: Simple groundwater flow case for the course Modelling of Hydrosystems (mhs)

• Different single/two-phase, single/two-component problems: Examples from the course Environ-
mental Fluid Mechanics (efm)

14

5 Overview and Infrastructure

This chapter provides an overview of the general structure in DuMux 5.1 and gives help for basic work
with DuMux (5.2,5.3,5.4, 5.5). Further it presents useful external tools 5.6 and basic concepts 5.7.

5.1 Directory Structure

DuMux has the following folder structure, which is similar to other DUNE modules.

• bin: binaries, e.g. used for the automatic testing, post-processing, installation

• cmake: the configuration options for building DuMux

• doc: files necessary for the Doxygen documentation and this handbook, and various logos

• dumux: the main folder, containing the source files. See 5.1 for a visualized structure. For more
information on the models have a look at the Doxygen documentation.

• test: tests for each numerical model and some functionality. The structure is equivalent to
the dumux folder, the references folder contains solutions for the automatic testing. Each test
program consist of a main file main.cc, the problem definition *problem.hh (specifying initial
and boundary conditions), and an input file params.input. If necessary, spatially dependent
parameters are defined in *spatialparameters.hh. For more detailed descriptions of the tests,
please have a look at the Doxygen documentation.

5.2 Setup of new Folders and new Tests

This section describes how to set up a new folder and how to tell the build system there is a new one.

Adding new Folders

1) create new folder with content

2) adapt the CMakeList.txt in the folder above and add a line with add_subdirectory(NEW_FOLDER)

3) create a CMakeList.txt in the newly created folder

4) go to your build-directory and type make to re-configure the system

15

5 Overview and Infrastructure

dumux

porousmediumflow models
Specific definition for porous medium flow simulations for all models:
implementation of equations, model specific properties and indices.

parallel Helper files for parallel simulations.

nonlinear Newton’s method.

multidomain

boundary Coupling at the domain boundaries.

facet Mixed-dimensional coupling at facets.

embedded Embedding of a lower-dimensional model into a higher-dimensional one

Common infrastructure to couple multiple domains, models or physics.

material

spatialparams
Base class for all spatially dependent variables, like permeability and
porosity. Includes spatial averaging routines. All other properties are
specified in the specific files of the respective models.

solidsystems Solid systems express the thermodynamic properties of a solid.

solidstates
Solid states are responsible for caching the thermodynamic configuration
of a solid system at a given spatial and temporal position.

fluidsystems Fluid systems express the thermodynamic relations between quantities.

fluidstates
Fluid states are responsible for caching the thermodynamic configura-
tion of a fluid system at a given spatial and temporal position.

fluidmatrixint.
Constitutive relationships (e.g. capillary pressures, relative permeabili-
ties)

eos Equations of state (eos) are auxiliary classes which provide relations be-
tween a fluid phase’s temperature, pressure, composition and density.

constraintsolvers
Constraint solvers to make sure that the resulting fluid state is consis-
tent with a given set of thermodynamic equations.

components
Properties of a pure chemical substance (e.g. water) or pseudo sub-
stance (e.g. air).

chemistry Files needed to account for, e.g. electro-chemical processes as in a fuel
cell.

binarycoefficients
Binary coefficients (like binary diffusion coefficients) and those needed
for the constitutive relationships (e.g. Henry coefficient)

linear Linear solver backend.

io
Additional in-/output possibilities like restart files, gnuplot-interface,
VTKWriter extensions and files for grid generation.

geomechanics models Elastic and poro-elastic geomechanics models.

freeflow models
Single-phase free flow models using Navier-Stokes and eddy-viscosity
based Reynolds-averaged Navier-Stokes turbulence models.

flux Collection of classes used to calculate advective and diffusive fluxes.

discretization
Common methods for all discretizations (box, cell-centered TP-
FA/MPFA, staggered grid): variable caching, advective and diffusive
fluxes, ...

common

typetraits Helper classes to query type information on compile-time.

properties Base properties for all models.

geometry Geometrical algorithms

Common files of all models: definition of boundary conditions, time
stepping, splines, dimensionless numbers ...

assembly Matrix assembler and residual for all discretization methods.

adaptive Data transfer on new grid, adaptation indicators.

Figure 5.1: Structure of the directory dumux containing the DuMux source files.

16

5 Overview and Infrastructure

Adding new Test Programs To add a test use the add dune test macro within the CMakeList.txt

file. The macro can be used with a variable amount of arguments. A simple call could look like this:

1 dune_add_test(NAME my_test

2 SOURCES main.cc

3 CMD_ARGS my_test params.input)

Here, we create an executable called my test from a source file main.cc. The name of the test will
also be my test (has to be unique). The last argument specifies a command - here, we just run the
executable my test with an input file params.input. For more advanced uses of the add dune test

macro, have a look at the test directory. A complete documentation is given under https://www.

dune-project.org/sphinx/core-2.5/.

5.3 Parameters in DuMux

Simulation parameters can be parsed to the program via a parameter file or the command line. A list
of all available parameters is provided in the Doxygen documentation: Parameter List.

After having run the example application from section 3.3 you will get the following output at the
end of the simulation run 1:

Runtime-specified parameters used:

[Grid]

Cells = "48 32"

UpperRight = "6 4"

[Newton]

EnablePartialReassembly = "true"

[Problem]

EnableGravity = "true"

Name = "2p"

[SpatialParams]

LensLowerLeft = "1.0 2.0"

LensUpperRight = "4.0 3.0"

[TimeLoop]

DtInitial = "250"

TEnd = "3000"

Global default parameters used:

[Assembly]

NumericDifferenceMethod = "1"

[Flux]

UpwindWeight = "1.0"

[LinearSolver]

MaxIterations = "250"

PreconditionerIterations = "1"

PreconditionerRelaxation = "1.0"

ResidualReduction = "1e-13"

Verbosity = "0"

[Newton]

EnableAbsoluteResidualCriterion = "false"

1If you did not get the output, add Parameters::print(); to your main file.

17

https://www.dune-project.org/sphinx/core-2.5/
https://www.dune-project.org/sphinx/core-2.5/

5 Overview and Infrastructure

EnableChop = "false"

EnableResidualCriterion = "false"

EnableShiftCriterion = "true"

MaxAbsoluteResidual = "1e-5"

MaxRelativeShift = "1e-8"

MaxSteps = "18"

ResidualReduction = "1e-5"

SatisfyResidualAndShiftCriterion = "false"

TargetSteps = "10"

UseLineSearch = "false"

[TimeLoop]

MaxTimeStepSize = "1e300"

[Vtk]

AddProcessRank = "true"

AddVelocity = "false"

Unused parameters:

Grid.LowerLeft = "0 0"

A number of things can be learned:

• run-time parameters can be changed without re-compiling

• default parameters are set by default

• unused parameters are not used by the simulation (maybe typo or wrong group in input file)

5.3.1 Parameter Values

To get the value of an input parameter please use:

1 static const TYPE paramname = getParam<TYPE>("GROUPNAME.PARAMNAME");

If you also want to set a default value for a parameter, just add it like this:

2 static const TYPE paramname = getParam<TYPE>("GROUPNAME.PARAMNAME", default);

As this function call is relatively expensive, the respective variables should always be static (e.g.,
if used in a loop). When dealing with multiple group names, e.g., in the context of coupled models,
the fowolling methods might be more convenient:

3 auto modelParamGroup0 = "Model0";

4 static const TYPE paramname0 = getParamFromGroup<TYPE>(modelParamGroup0, "GROUPNAME.PARAMNAME");

5 auto modelParamGroup1 = "Model1";

6 static const TYPE paramname1 = getParamFromGroup<TYPE>(modelParamGroup1, "GROUPNAME.PARAMNAME");

The FVProblem class provides a convenience function paramGroup().
The parameters can then be specified in the input file:

[Model0.Grid]

File = file0.dgf

[Model1.Grid]

File = file1.dgf

18

5 Overview and Infrastructure

5.4 Restart DuMux Simulations

DuMux has some experimental support for check-pointing (restarting paused/stopped/crashed simu-
lations). You can restart a DuMux simulation from any time point where a VTK file was written out.
This is currently only supported for sequential, non-adaptive simulations. For adaptive simulation the
full hierarchical grid has to be stored. This is usually done with the grid’s BackupRestoreFacility.
There is currently no special support by DuMux for that, but it is possible to implement a restart
using BackupRestoreFacility with plain Dune.

For VTK files the output can be read with the free function loadSolution. Grids can be read with
the Dumux::VTKReader or you can simply recreate the grid as you did in the first simulation run.

Unfortunately, writing double-precision floating point numbers to VTK files is only available with
Dune master (will be in 2.7). That’s why we currently only support single precision restart, meaning
some information will be lost if you are computing in double precision.

The restart capabilities will hopefully be improved in future versions of DuMux-3. We are happy
about any contributions (especially HDF5 / XDMF support, improvement of VTK support).

5.5 Developing DuMux

5.5.1 Communicate with DuMux Developers

Issues and Bug Tracking The bug-tracking system GitLab Issues offers the possibility to report bugs
or discuss new development requests. Feel free to register (if you don’t have a Git account already)
and to contribute at https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/issues.

Commits, Merges, etc. To be up-to-date with the latest changes made to any git-repository you can
use RSS Feeds. Simply click on Issues or Activity and then select a tab you are interested in and use
your favorite RSS-application for receiving the news.

Automatic Testing Dashboard The automatic testing using BuildBot helps to constantly check
the DuMux problems for compiling and running correctly. It is available at https://git.iws.

uni-stuttgart.de/buildbot/#/builders.

The General Mailing List: If you have questions, specific problems (which you really struggle to
solve on your own), or hints for the DuMux-developers, please contact the mailing list dumux@iws.

uni-stuttgart.de. You can subscribe to the mailing list via https://listserv.uni-stuttgart.

de/mailman/listinfo/dumux, then you will be informed about upcoming releases or events.

5.5.2 Coding Guidelines

Writing code in a readable manner is very important, especially for future code developers (e.g. for
adding features, debugging, etc.). For the style guide and instructions how to contribute to DuMux visit
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/blob/master/CONTRIBUTING.md.

5.5.3 Tips and Tricks

DuMux users and developers at the LH2 are also referred to the internal Wiki for more information.

19

https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/issues
https://git.iws.uni-stuttgart.de/buildbot/#/builders
https://git.iws.uni-stuttgart.de/buildbot/#/builders
dumux@iws.uni-stuttgart.de
dumux@iws.uni-stuttgart.de
https://listserv.uni-stuttgart.de/mailman/listinfo/dumux
https://listserv.uni-stuttgart.de/mailman/listinfo/dumux
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/blob/master/CONTRIBUTING.md

5 Overview and Infrastructure

Optimized computation vs debugging DUNE and DuMux are built with the help of dunecontrol,
as explained on page 9. Per default, DuMux is compiled using optimization options, which leads to
faster runtimes but is unsuitable for debugging. For debug opts you can set DCMAKE BUILD TYPE to
Debug or RelWithDebInfo in your options file. You can also do this in any of the CMakeLists.txt in
Dumux by adding:

1 set(CMAKE_BUILD_TYPE Debug)

Afterwards rerun cmake again (run cmake ¡path-to-build-dir¿).

Dunecontrol for selected modules A complete build using dunecontrol takes some time. In many
cases not all modules need to be re-built. Pass the flag --only=dumux to dunecontrol for configuring
or building only DuMux. A more complex example would be the use of an additional module. Then
you have to configure and build only DUNE-grid and DuMux by adding --only=MODULE,dumux.

Patching Files or Modules If you want to send changes to an other developer of DuMux providing
patches can be quite smart. To create a patch simply type:

$ git diff > PATCHFILE

which creates a text file containing all your changes to the files in the current folder or its subdirectories.
To apply a patch in the same directory type:

$ patch -p1 < PATCHFILE

File Name and Line Number by Predefined Macro If you want to know where some output or
debug information came from, use the predefined macros FILE and LINE :

1 std::cout << "# This was written from "<< __FILE__ << ", line " << __LINE__ << std::endl;

Using DUNE Debug Streams DUNE provides a helpful feature, for keeping your debug-output
organized. It uses simple streams like std::cout, but they can be switched on and off for the whole
project. You can chose five different levels of severity:

5 - grave (dgrave)

4 - warning (dwarn)

3 - info (dinfo)

2 - verbose (dverb)

1 - very verbose (dvverb)

They are used as follows:

1 // define the minimal debug level somewhere in your code

2 #define DUNE_MINIMAL_DEBUG_LEVEL 4

3 Dune::dgrave << "message"; // will be printed

4 Dune::dwarn << "message"; // will be printed

5 Dune::dinfo << "message"; // will NOT be printed

20

5 Overview and Infrastructure

Make headercheck: To check one header file for all necessary includes to compile the contained
code, use make headercheck. Include the option -DENABLE HEADERCHECK=1 in your opts file and run
dunecontrol. Then go to the top level in your build-directory and type make headercheck to check
all headers or press ’tab’ to use the auto-completion to search for a specific header.

5.6 External Tools

5.6.1 Git

Git is a version control tool which we use. The basic Git commands are:

• git checkout: receive a specified branch from the repository

• git clone: clone a repository; creates a local copy

• git diff: to see the actual changes compared to your last commit

• git pull: pull changes from the repository; synchronizes the repository with your local copy

• git push: push comitted changes to the repository; synchronizes your local copy with the repos-
itory

• git status: to check which files/folders have been changed

• git gui: graphical user interface, helps selecting changes for a commit

5.6.2 Gnuplot

A gnuplot interface is available to plot or visualize results during a simulation run. This is achieved
with the help of the Dumux::GnuplotInterface class provided in io/gnuplotinterface.hh.

To use the gnuplot interface you have to make some modifications in your file, e.g., your main file.
First, you have to include the corresponding header file for the gnuplot interface.

1 #include <dumux/io/gnuplotinterface.hh

Second, you have to define an instance of the class Dumux::GnuplotInterface (e.g. called gnuplot).

1 Dumux::GnuplotInterface<double> gnuplot;

As an example, to plot the mole fraction of nitrogen (y) over time (x), extract the variables after
each time step in the time loop. The actual plotting is done using the method of the gnuplot interface:

1 gnuplot.resetPlot(); // reset the plot

2 gnuplot.setXRange(0.0, 72000.0); // specify xmin and xmax

3 gnuplot.setYRange(0.0, 1.0); // specify ymin and ymax

4 gnuplot.setXlabel("time [s]"); // set xlabel

5 gnuplot.setYlabel("mole fraction mol/mol"); // set ylabel

6

7 // set x-values, y-values, the name of the data file and the Gnuplot options

8 gnuplot.addDataSetToPlot(x, y, "N2.dat", options);

9

10 gnuplot.plot("mole_fraction_N2"); // set the name of the output file

It is also possible to add several data sets to one plot by calling addDataSetToPlot() more than once.
For more information have a look into a test including the gnuplot interface header file, the doxygen doc-
umentation of Dumux::GnuplotInterface, or the header file itself (dumux/io/gnuplotinterface.hh).

21

5 Overview and Infrastructure

5.6.3 Gstat

Gstat is an open source software tool which generates geostatistical random fields (see www.gstat.org).
In order to use gstat, execute the bin/installexternal.sh from your DuMux root directory or
donwload, unpack and install the tarball from the gstat-website. Then rerun cmake (in the second
case set GSTAT ROOT in your input file to the path where gstat is installed).

5.6.4 ParaView

Reload Button: There are scripts to reload PVD or series of VTU files since ParaView 4.2. The
scripts can be found under this link. Just save the specific code portion in a file and load it via
Macros → Add new macro.

Guide: Since ParaView 4.3.1, The ParaView Guide is partly available for free download, see http:

//www.paraview.org/documentation/. It corresponds to the ParaView book, only three application
chapters short. Attention, its size is 180 MiB.

5.7 Assembling the linear system

The physical system is implemented as the mathematical differential equation in local operators. Du-
Mux generates the linear system automatically. Read on, to learn what is done internally.

5.7.1 Newton’s method

The differential equations are implemented in the residual form. All terms are on the left hand side
and are summed up. The terms contain values for the primary variables which are part of the solution
vector u. The sum of the terms is called residual r(u) which is a function of the solution. For example:

φ
∂%αSα
∂t

− div

(
%α
krα
µα

K (grad pα − %αg)

)
− qα︸ ︷︷ ︸

=: r(u)

= 0

We don’t know the solution u, so we use the iterative Newton’s method to obtain a good estimate
of u. We start with an initial guess u0 and calculate it’s residual r(u0). To minimize the error, we
calculate the derivative of the residual with respect to the solution. This is the Jacobian matrix

d

du
r
(
ui
)

= Jr(ui) =

(
d

duim
r
(
ui
)
n

)
m,n

with i denoting the Newton iteration step. Each column is the residual derived with respect to the
mth entry of ui.

The Jacobian indicates the direction where the residual increases. By solving the linear system

Jr(ui) · xi = r(ui)

we calculate the direction of maximum growth xi. We subtract it from our current solution to get a
new, better solution ui+1 = ui − xi.

We repeat the calculation of of the Jacobian Jr(ui) and the direction of maximum growth xi until
our approximated solution becomes good enough.

22

www.gstat.org
http://markmail.org/message/exxynsgishbvtngg#query:+page:1+mid:rxlwxs7uqrfgibyv+state:results
http://www.paraview.org/documentation/
http://www.paraview.org/documentation/

5 Overview and Infrastructure

5.7.2 Structure of matrix and vectors

To understand the meaning of an entry in the matrix or the vector of the linear system, we have to
define their structure. Both have a blocking structure. Each block contains the degrees of freedom
(also called variable or unknown) for a control volume. The equation index is used to order of the
degrees of freedom. For each control volume we have one block. The mapper is used to order the
blocks.

1. CV 2. CV n. CV

. . . 1. CV

. . . 2. CV

...
...

. . .
...

. . . n. CV

...

eqIdx

0

1
...

m− 1

Figure 5.2: Structure of matrix and vector, left blocking structure, right within block

Accessing entries follows this structure. You can access the pressure value in the third sub-control
volume in a vector sol with sol [2][pressureIdx].

23

6 Advanced DuMux – Detailed Instructions

This chapter contains detailed information for those who are interested in deeper modifications of
underlying DuMux models, classes, functions, etc.

6.1 Physical Basics

Here the basic definitions, the general models concept, and a list of models available in DuMux are
given. The actual differential equations can be found in the local residuals (see Doxygen documentation
of the model’s LocalResidual class).

6.1.1 Basic Definitions and Assumptions

The basic definitions and assumptions are made, using the example of a three-phase three-component
system water-NAPL-gas [8]. The modification for other multi-component systems is straightforward
and can be found, e. g., in [6, 2].

Components: The term component stands for constituents of the phases which can be associated with
a unique chemical species, or, more generally, with a group of species exploiting similar physical
behavior. In this work, we assume a water-gas-NAPL system composed of the phases water
(subscript w), gas (g), and NAPL (n). These phases are composed of the components water
(superscript w), the pseudo-component air (a), and the organic contaminant (c) (see Fig. 6.1).

Phases: For compositional multi-phase models, phases are not only matter of a single chemical sub-
stance. Instead, their composition in general includes several species/components. For mass
transfer, the component behavior is quite different from the phase behavior.

Equilibrium: For the non-isothermal, multi-phase, multi-component processes in porous media we state
that the assumption of local thermodynamic equilibrium. Chemical equilibrium means that the
mass/mole fractions of a component in different phases are in equilibrium. Thermal equilibrium
assumes the same temperature for all considered phases. Mechanical equilibrium is not valid in
a porous medium, since discontinuities in pressure can occur across a fluid-fluid interface due to
capillary effects.

Notation: The subscript index α ∈ {w,n, g} refers to the phase, while the superscript κ ∈ {w, a, c}
refers to the component.

6.1.2 Gas mixing laws

Prediction of the p−%−T behavior of gas mixtures is typically based on two (contradicting) concepts:
Dalton’s law or Amagat’s law. In the following the two concepts will be explained in more detail.

24

6 Advanced DuMux – Detailed Instructions

pα phase pressure φ porosity
T temperature K absolute permeability tensor
Sα phase saturation τ tortuosity
xκα mole fraction of component κ in phase α g gravitational acceleration
Xκ
α mass fraction of component κ in phase α qκα volume source term of κ in α

%mol,α molar density of phase α uα specific internal energy
%α mass density of phase α hα specific enthalpy
M molar mass of a phase or component cs specific heat enthalpy
krα relative permeability λpm heat conductivity
µα phase viscosity qh heat source term
Dκ
α diffusivity of component κ in phase α va,α advective velocity

vα velocity (Darcy or free flow)

Table 6.1: Notation list for most of the variables and indices used in DuMux.

solid phase (porous matrix)

water phase (w) gas phase (g)

NAPL phase (n)

adsorption

desorption

condensation, dissolution

evaporation, degassing

diss
ol

utio
n

evaporation

condensation

gas

NAPL

thermal energy (h)

Mass components

Air

Water

Organic contaminant (NAPL)

Solid phase

Figure 6.1: Mass and energy transfer between the phases

25

6 Advanced DuMux – Detailed Instructions

Dalton’s law

Dalton’s law assumes that the gases in the mixture are non-interacting (with each other) and each gas
independently applies its own pressure (partial pressure), the sum of which is the total pressure:

p =
∑
i

pi. (6.1)

Here pi refers to the partial pressure of component i. As an example, if two equal volumes of gas A
and gas B are mixed, the volume of the mixture stays the same but the pressures add up (see Figure
6.2). The density of the mixture, %, can be calculated as follows:

Figure 6.2: Dalton’s law visualized

% =
m

V
=
mA +mB

V
=
%AV + %BV

V
= %A + %B, (6.2)

or for an arbitrary number of gases:

% =
∑
i

%i; %m =
∑
i

%m,i. (6.3)

Amagat’s law

Amagat’s law assumes that the volumes of the component gases are additive; the interactions of the
different gases are the same as the average interactions of the components. This is known as Amagat’s
law:

V =
∑
i

Vi. (6.4)

As an example, if two volumes of gas A and B at equal pressure are mixed, the pressure of the mixture
stays the same, but the volumes add up (see Figure 6.3). The density of the mixture, %, can be
calculated as follows:

% =
m

V
=

m

VA + VB
=

m
mA
%A

mB
%B

=
m

XAm
%A

XBm
%B

=
1

XA
%A

XB
%B

, (6.5)

or for an arbitrary number of gases:

% =
1∑
i
Xi
%i

; %m =
1∑
i
xi
%m,i

. (6.6)

26

6 Advanced DuMux – Detailed Instructions

Figure 6.3: Amagat’s law visualized

Ideal gases

An ideal gas is defined as a gas whose molecules are spaced so far apart that the behavior of a molecule
is not influenced by the presence of other molecules. This assumption is usually valid at low pressures
and high temperatures. The ideal gas law states that, for one gas:

p = %
RT

M
; p = %mRT. (6.7)

Using the assumption of ideal gases and either Dalton’s law or Amagat’s law lead to the density of the
mixture, %, as:

% =
p

RT

∑
i

Mixi; %m =
p

RT
. (6.8)

6.1.3 Available Models

A list of all available models can be found in the Doxygen documentation at http://www.dumux.

org/doxygen-stable/html-3.0/modules.php. The documentation includes a detailed description
for every model.

6.2 Temporal Discretization and Solution Strategies

6.2.1 Temporal discretization

Our systems of partial differential equations are discretized in space and in time.
Let us consider the general case of a balance equation of the following form

∂m(u)

∂t
+∇ · f(u,∇u) + q(u) = 0, (6.9)

seeking an unknown quantity u in terms of storage m, flux f and source q. All available Dumux models
can be written mathematically in form of (6.9) with possibly vector-valued quantities u, m, q and a
tensor-valued flux f . For the sake of simplicity, we assume scalar quantities u, m, q and a vector-valued
flux f in the notation below.

For discretizing (6.9) we need to choose an approximation for the temporal derivative ∂m(u)/∂t.
While many elaborate methods for this approximation exist, we focus on the simplest one of a first

27

http://www.dumux.org/doxygen-stable/html-3.0/modules.php
http://www.dumux.org/doxygen-stable/html-3.0/modules.php

6 Advanced DuMux – Detailed Instructions

order difference quotient
∂m(uk/k+1)

∂t
≈ m(uk+1)−m(uk)

∆tk+1
(6.10)

for approximating the solution u at time tk (forward) or tk+1 (backward). The question of whether
to choose the forward or the backward quotient leads to the explicit and implicit Euler method,
respectively. In case of the former, inserting (6.10) in (6.9) at time tk leads to

m(uk+1)−m(uk)

∆tk+1
+∇ · f(uk,∇uk) + q(uk) = 0, (6.11)

whereas the implicit Euler method is described as

m(uk+1)−m(uk)

∆tk+1
+∇ · f(uk+1,∇uk+1) + q(uk+1) = 0. (6.12)

Once the solution uk at time tk is known, it is straightforward to determine m(uk+1) from (6.11), while
attempting to do the same based on (6.12) involves the solution of a system of equations. On the other
hand, the explicit method (6.11) is stable only if the time step size ∆tk+1 is below a certain limit that
depends on the specific balance equation, whereas the implicit method (6.12) is unconditionally stable.

6.2.2 Solution strategies to solve equations

The governing equations of each model can be solved monolithically or sequentially. The basic idea
of the sequential algorithm is to reformulate the equations of multi-phase flow into one equation for
pressure and equations for phase/component/... transport. The pressure equation is the sum of the
mass balance equations and thus considers the total flow of the fluid system. The new set of equations
is considered as decoupled (or weakly coupled) and can thus be solved sequentially. The most popular
sequential model is the fractional flow formulation for two-phase flow which is usually implemented
applying an IMplicit Pressure Explicit Saturation algorithm (IMPES). In comparison to solving the
equations monolithically, the sequential structure allows the use of different discretization methods
for the different equations. The standard method used in the sequential algorithm is a cell-centered
finite volume method. Further schemes, so far only available for the two-phase pressure equation,
are cell-centered finite volumes with multi-point flux approximation (Mpfa-O method) and mimetic
finite differences. An h-adaptive implementation of both sequential algorithms is provided for two
dimensions.

6.3 Spatial Discretization

We discretize space with cell-centered finite volume methods (6.3.1), the box method (6.3.2) or a
staggered grid scheme (6.3.3). Grid adaption is available for both box and cell-centered finite volume
method. In general, the spatial parameters, especially the porosity, have to be assigned on the coarsest
level of discretization.

28

6 Advanced DuMux – Detailed Instructions

6.3.1 Cell Centered Finite Volume Methods – A Short Introduction

Cell-centered finite volume methods use the elements of the grid as control volumes. For each control
volume the discrete values are determined at the element/control volume center (not required to be
the barycenters).

We consider a domain Ω ⊂ Rd, d ∈ {2, 3} with boundary Γ = ∂Ω. Within this section, we consider
the following elliptic problem

∇ · (−Λ∇u) = q in Ω

(−Λ∇u) · n = vN on ΓN

u = uD on ΓD.

(6.13)

Here, Λ = Λ(x,u) is a symmetric and positive definite tensor of second rank (e.g. permeability,
diffusivity, etc.), u = u(x) is unknown and q = q(x,u) is a source/sink. We denote by M the mesh
that results from the division of the domain Ω into ne control volumes K ⊂ Ω. Each K is a polygonal
open set such that K ∩ L = ∅, ∀K 6= L and Ω = ∪K∈MK.

For the derivation of the finite-volume formulation we integrate the first equation of (6.13) over a
control volume K and apply the Gauss divergence theorem:∫

∂K
(−Λ∇u) · n dΓ =

∫
K
q dx. (6.14)

Splitting the control volume boundary ∂K into a finite number of faces σ ⊂ ∂K (such that σ = K∩L
for some neighboring control volume L) and replacing the exact fluxes by an approximation, i.e.
FK,σ ≈

∫
σ (−ΛK∇u) · ndΓ (here ΛK is the value of Λ associated with control volume K), yield∑

σ⊂∂K
FK,σ = QK , ∀K ∈M, (6.15)

where FK,σ is the discrete flux through face σ flowing out of cell K and QK :=
∫
K q dx is the integrated

source/sink term. Equation (6.15) is the typical cell-centered finite-volume formulation. Finite-volume
schemes differ in the way how the term (ΛK∇u) ·n is approximated (i.e. the choice of the fluxes FK,σ).
Using the symmetry of the tensor ΛK , this term can be rewritten as ∇u · ΛKn, which corresponds
to the directional derivative of u in co-normal direction ΛKn. In the following, the main ideas of the
two-point flux approximation and the multi-point flux approximation methods are briefly described.
Hereby, we restrict the discussion to the two-dimensional case.

Please also note that other types of equations, e.g. instationary parabolic problems, can be dis-
cretized by applying some time discretization scheme to the time derivatives and by using the finite-
volume scheme for the flux discretization. For simplicity the discussion is restricted to the elliptic
problem (6.13).

Tpfa Method

The linear two-point flux approximation is a simple but robust cell-centered finite-volume scheme,
which is commonly used in commercial software. This scheme can be derived by using the co-normal
decomposition, which reads

ΛKnK,σ = tK,σdK,σ + d⊥K,σ, tK,σ =
nTK,σΛKdK,σ

dTK,σdK,σ
, d⊥K,σ = ΛKnK,σ − tK,σdK,σ, (6.16)

29

6 Advanced DuMux – Detailed Instructions

with the tensor ΛK associated with control volume K, the distance vector dK,σ := xσ − xK and
dTK,σd

⊥
K,σ = 0, see Figure 6.4 for the used notations. The same can be done for the conormal ΛLnL,σ.

The tK,σ and tL,σ are the transmissibilities associated with the face σ. These transmissibilities are
calculated in DuMux by using the function computeTpfaTransmissibility.

Figure 6.4: Two neighboring control volumes sharing the face σ.

With these notations, it follows that for each cell K and face σ

∇u ·ΛKnK,σ = tK,σ∇u · dK,σ +∇u · d⊥K,σ. (6.17)

For the Tpfa scheme, the second part in the above equation is neglected. By using the fact that
∇u · dK,σ ≈ uσ − uK , the discrete fluxes for face σ are given by

FK,σ = −|σ|tK,σ(uσ − uK), FL,σ = −|σ|tL,σ(uσ − uL). (6.18)

Enforcing local flux conservation, i.e. FK,σ + FL,σ = 0, results in

uσ =
tK,σuK + tL,σuL
tK,σ + tL,σ

. (6.19)

With this, the fluxes (6.18) are rewritten as

FK,σ = |σ|
tK,σtL,σ
tK,σ + tL,σ

(uK − uL), FL,σ = |σ|
tK,σtL,σ
tK,σ + tL,σ

(uL − uK). (6.20)

By neglecting the orthogonal term, the consistency of the scheme is lost for general grids, where
∇u · d⊥K,σ 6= 0. The consistency is achieved only for so-called K-orthogonal grids for which d⊥K,σ = 0.
For such grids we deduce that

tK,σtL,σ
tK,σ + tL,σ

=
τK,στL,σ

τK,σdL,σ + τL,σdK,σ
, (6.21)

with τK,σ := nK,σΛKnK,σ, τL,σ := nL,σΛLnL,σ, dK,σ := nK,σ · dK,σ, and dL,σ := nL,σ · dL,σ. This
reduces, for the case of scalar permeability, to a distance weighted harmonic averaging of permeabilities.

Mpfa Method

Expressions for the face fluxes FK,σ are obtained by introducing intermediate face unknowns uσ in
addition to the cell unknowns uK and enforcing the physically motivated continuity of fluxes and

30

6 Advanced DuMux – Detailed Instructions

continuity of the solution across the faces. For a face σ between the two polygons K and L these
conditions read:

FK,σ + FL,σ = 0

uK,σ = uL,σ = uσ.
(6.22)

Using these conditions, the intermediate face unknowns uσ can be eliminated and the fluxes are
expressed as a function of the cell unknowns uN and associated transmissibilities tNK,σ:

FK,σ =
∑

N∈SK,σ

tNK,σuN . (6.23)

Figure 6.5: Interaction region for the Mpfa-O method. The graphic on the right illustrates how the sub-
control volume Lv and face σv2 are embedded in cell L. Note that the face stencils for all sub-
control volume faces in the depicted interaction region are Sσvi = {K,L,M}, meaning that
the fluxes over the sub-control volume faces depend on the three cell unknowns uK , uL, uM .

The main difference between the various finite-volume schemes available is the assembly of the face
fluxes, i.e. the computation of the tNK,σ and the size of SK,σ. For the Tpfa, that has been presented in
the last section, the stencil and transmissibilities are given as

SK,σ = {K,L}, tKK,σ = |σ|
tK,σtL,σ
tK,σ + tL,σ

, tLK,σ = −|σ|
tK,σtL,σ
tK,σ + tL,σ

,

with tK,σ, tL,σ as defined in equation (6.16).
In the following, a multi-point flux approximation method (Mpfa-O method), which was introduced

in Aavatsmark [1], is presented. The main difference to the Tpfa scheme is the fact that a consistent
discrete gradient is constructed, i.e. the term ∇u · d⊥K,σ is not neglected.

31

6 Advanced DuMux – Detailed Instructions

For this scheme, a dual grid is created by connecting the barycenters of the cells with the barycenters
of the faces (d = 2) or the barycenters of the faces and edges (d = 3). This divides each cell into sub-
control volumes Kv. Analogously, each face is sub-divided into sub-control volume faces σv, see Figure
6.5. We allow for piecewise constant Λ (denoted as ΛK for each cell K) and construct discrete gradients
∇Kv

D u (per sub-control volume Kv). In the following, we restrict our discussion to the two-dimensional
setup that is shown in Figure 6.5. Here, the discrete gradients are constructed to be consistent such
that the following conditions hold:

∇Kv

D u · (xσv1 − xK) = uσv1 − uK , ∇Kv

D u · (xσv3 − xK) = uσv3 − uK . (6.24)

Thus, a discrete gradient (for sub-control volume Kv) that fulfills these conditions is given as

∇Kv

D u = D−TKv

[
uσv1 − uK
uσv3 − uK

]
, with DKv :=

[
xσv1 − xK xσv3 − xK

]
. (6.25)

This enables us to write the discrete flux across σv1 from cell K as follows:

FK,σv1 := −|σv1 |nTσv1ΛK∇K
v

D u. (6.26)

Inserting the discrete gradient, yields

FK,σv1 = ωK,σv1σv1 (uK − uσv1) + ωK,σv1σv3 (uK − uσv3), (6.27)

with (ωK,σv1σv1 , ωK,σv1σv3)T = |σv1 |D
−1
KvΛKnσv1 . These values are calculated in DuMux by using the func-

tion computeMpfaTransmissibility.

To deduce a cell-centered scheme, the introduced face unknowns uσvi have to be eliminated. This
is done by enforcing flux continuity for each sub-control volume face, i.e.

FK,σv1 + FL,σv1 = 0, (6.28)

FK,σv3 + FM,σv3
= 0, (6.29)

FL,σv2 + FM,σv2
= 0. (6.30)

This results in a system of equations for the face unknowns uσ

A3×3uσ = B3×3u, (6.31)

where u contains the three cell unknowns uK , uL, uM and uσ the three face unknowns uσv1 , uσv2 , uσv3 .
Inserting these face unknowns into the flux expression (6.27) yields

FK,σvi =
∑

N∈{K,L,M}

tNK,σvi uN = tK,σvi · u, (6.32)

for each cell K and sub-control volume face σvi .

32

6 Advanced DuMux – Detailed Instructions

Figure 6.6: Discretization of the box method

6.3.2 Box Method – A Short Introduction

The so called box method unites the advantages of the finite-volume (FV) and finite-element (FE)
methods.

First, the model domain Ω is discretized with a FE mesh consisting of nodes i and corresponding
elements Ek. Then, a secondary FV mesh is constructed by connecting the midpoints and barycenters
of the elements surrounding node i creating a box Bi around node i (see Figure 6.6a).

The FE mesh divides the box Bi into subcontrolvolumes (scv’s) bki (see Figure 6.6b). Figure 6.6c
shows the finite element Ek and the scv’s bki inside Ek, which belong to four different boxes Bi. Also
necessary for the discretization are the faces of the subcontrolvolumes (scvf’s) ekij between the scv’s bki
and bkj , where |ekij | is the length of the scvf. The integration points xkij on ekij and the outer normal

vector nkij are also to be defined (see Figure 6.6c).
The advantage of the FE method is that unstructured grids can be used, while the FV method is

mass conservative. The idea is to apply the FV method (balance of fluxes across the interfaces) to
each FV box Bi and to get the fluxes across the interfaces ekij at the integration points xkij from the
FE approach. Consequently, at each scvf the following expression results:

f(ũ(xkij)) · nkij |ekij | with ũ(xkij) =
∑
i

Ni(x
k
ij) · ûi. (6.33)

In the following, the discretization of the balance equation is going to be derived. From the
Reynolds transport theorem follows the general balance equation:

33

6 Advanced DuMux – Detailed Instructions

∫
Ω

∂

∂t
udx︸ ︷︷ ︸

1

+

∫
∂Ω

(vu+ w) · n dΓ︸ ︷︷ ︸
2

=

∫
Ω
q dx︸ ︷︷ ︸
3

(6.34)

f(u) =

∫
Ω

∂u

∂t
dx+

∫
Ω
∇ · [vu+ w(u)]︸ ︷︷ ︸

F (u)

dx−
∫

Ω
q dx = 0 (6.35)

where term 1 describes the changes of entity u within a control volume over time, term 2 the advective,
diffusive and dispersive fluxes over the interfaces of the control volume and term 3 is the source and
sink term. Ω denotes the model domain and F (u) = F (v, p) = F (v(x, t), p(x, t)).

Like the FE method, the box method follows the principle of weighted residuals. In the function
f(u) the unknown u is approximated by discrete values at the nodes of the FE mesh ûi and linear
basis functions Ni yielding an approximate function f(ũ). For u ∈ {v, p, xκ} this means:

p̃ =
∑
i

Nip̂i (6.36)

ṽ =
∑
i

Niv̂i (6.37)

x̃κ =
∑
i

Nix̂
κ
i (6.38)

∇p̃ =
∑
i

∇Nip̂i (6.39)

∇ṽ =
∑
i

∇Niv̂i (6.40)

∇x̃κ =
∑
i

∇Nix̂
κ
i . (6.41)

Due to the approximation with node values and basis functions the differential equations are not
exactly fulfilled anymore but a residual ε is produced.

f(u) = 0 ⇒ f(ũ) = ε (6.42)

Application of the principle of weighted residuals, meaning the multiplication of the residual ε with
a weighting function Wj and claiming that this product has to vanish within the whole domain,∫

Ω
εWj dx

!
= 0 with

∑
j

Wj = 1 (6.43)

yields the following equation:∫
Ω

∂ũ

∂t
Wj dx+

∫
Ω

[∇ · F (ũ)]Wj dx−
∫

Ω
qWj dx =

∫
Ω
εWj dx

!
= 0. (6.44)

For standard Galerkin schemes, the weighting functions Wj are chosen the same as the ansatz
functions Nj . However, this does not yield a locally mass-conservative scheme. Therefore, for the Box
method, the weighting functions Wj are chosen as the piece-wise constant functions over a control
volume box Bj , i.e.

Wj(x) =

{
1 x ∈ Bj
0 x /∈ Bj .

(6.45)

Thus, the Box method is a Petrov-Galerkin scheme, where the weighting functions do not belong to
the same function space than the ansatz functions.

34

6 Advanced DuMux – Detailed Instructions

Inserting definition (6.45) into equation (6.44) and using the Green-Gaussian integral theorem
results in ∫

Bj

∂ũ

∂t
dx+

∫
∂Bj

F (ũ) · n dΓBj −
∫
Bj

q dx
!

= 0, (6.46)

which has to hold for every box Bj .
The first term in equation (6.46) can be written as∫

Bj

∂ũ

∂t
dx =

d

dt

∫
Bj

∑
i

ûiNi dx =
∑
i

∂ûi
∂t

∫
Bj

Ni dx. (6.47)

Here, a mass lumping technique is applied by assuming that the storage capacity is reduced to the
nodes. This means that the integrals Mi,j =

∫
Bj
Ni dx are replaced by some mass lumped terms M lump

i,j

which are defined as

M lump
i,j =

{
|Bj | j = i

0 j 6= i,
(6.48)

where |Bj | is the volume of the FV box Bj associated with node j. The application of this assumption
yields

|Bj |
∂ûj
∂t

+

∫
∂Bj

F (ũ) · n dΓBj −Qj = 0, (6.49)

where Qj is an approximation (using some quadrature rule) of the integrated source/sink term
∫
Bj
q dx.

Using an implicit Euler time discretization finally leads to the discretized form which will be applied
to the mathematical flow and transport equations:

|Bj |
ûn+1
j − ûnj

∆t
+

∫
∂Bj

F (ũn+1) · n dΓBj −Q
n+1
j = 0. (6.50)

Equation (6.50) has to be fulfilled for each box Bj .

6.3.3 Staggered Grid – A Short Introduction

The staggered-grid or marker-and-cell method uses a finite volume method with different control vol-
umes for different equations. There are control volumes centered around the scalar primary variables.
They correspond to the finite volume mesh. Additionally, there are control volumes located around
the x, y and (in 3D) z velocity components which are shifted in the x, y and z direction, such that the
velocity components are located on the edges of the cell-centered finite volume mesh (see Figure 6.7).
As for the cell-centered method, the fluxes are evaluated at the edges of each control volume with a
two-point flux approximation, cf. 6.3.1.

The staggered-grid method is robust, mass conservative, and free of pressure oscillations but should,
as the cell-centered TPFA method, only be applied for structured grids. Currently, all free-flow models
in DuMux use the staggered-grid discretization.

35

6 Advanced DuMux – Detailed Instructions

Figure 6.7: Discretization of the staggered-grid method. The figure shows the different control volume
arrangements, which are staggered with respect to each other. There are the control
volumes centered around the scalar primary variables in black, the control volumes located
around the x-component of the velocity in blue and the control volumes located around
the y-components of the velocity in red. The control volume boundaries are given by lines.
Additionally, there is one shaded example control volume each.
In the two-dimensional free-flow models, the continuity equation is discretized using the
black control volumes, the x-component of the momentum equation is discretized using the
blue control volumes and the y-component is discretized using the red control volumes. In
three dimensions this works analogously.

6.4 Steps of a DuMux Simulation

This chapter is supposed to give a short overview over how things are “handed around” in DuMux. It
is not a comprehenisve guide through the modeling framework of DuMux, but hopefully it will help
getting to grips with it.

In Section 6.4.1 the structure of DuMux is shown from a content point of view.

6.4.1 Structure – by Content

In Figure 6.8, the algorithmic representations of a monolithical solution scheme is illustrated down to
the element level.

6.4.2 Structure – by Implementation

A possible starting point to understand how the above mentioned algorithm is implemented within Du-
Mux, is the example main file https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/

36

https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/releases/3.0/exercises/exercise-mainfile/exercise_1p_a.cc
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/releases/3.0/exercises/exercise-mainfile/exercise_1p_a.cc

6 Advanced DuMux – Detailed Instructions

1. m
ai

n

2. tim
e

st
ep

3. N
ew

to
n

4. el
em

en
t

initialize
foreach time step

foreach Newton iteration
foreach element

- calculate element
residual vector and
Jacobian matrix

- assemble into global
residual vector and

Jacobian matrix
endfor
solve linear system
update solution
check for Newton convergence

endfor
- adapt time step size,

possibly redo with smaller step size
- write result

endfor
finalize

Figure 6.8: Structure of a monolithical solution scheme in DuMux.

releases/3.0/exercises/exercise-mainfile/exercise_1p_a.cc

6.5 Property System

A high level overview over the property system’s design and principle ideas are given, then follows a
reference and a self-contained example.

6.5.1 Motivation and features

The DuMux property system is a traits system which allows easy inheritance.
In the context of the DuMux property system, a property is an arbitrary class body which may

contain type definitions, values and methods.
Just like normal classes, properties can be arranged in hierarchies. In the context of the DuMux

property system, nodes of the inheritance hierarchy are called type tags.
It also supports property nesting. Property nesting means that the definition of a property can

depend on the value of other properties which may be defined for arbitrary levels of the inheritance
hierarchy.

6.5.2 How-to

All source files which use the property system should include the header file dumux/common/propertysystem.
hh. Declaration of type tags and property tags as well as defining properties must be done inside the

37

https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/releases/3.0/exercises/exercise-mainfile/exercise_1p_a.cc
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/releases/3.0/exercises/exercise-mainfile/exercise_1p_a.cc

6 Advanced DuMux – Detailed Instructions

namespace Dumux::Properties.

Defining Type Tags

New nodes in the type tag hierarchy can be defined in the TTag namespace using

1 // Create new type tags

2 namespace TTag {

3 struct NewTypeTagName { using InheritsFrom = std::tuple<BaseTagName1, BaseTagName2, ...>; };

4 } // end namespace TTag

where the InheritsFrom alias is optional. To avoid inconsistencies in the hierarchy, each type tag may
be defined only once for a program. If you call GetProp the property system will first look for the prop-
erties defined in BaseTagName1 in the InheritsFrom list. If a defined property is found this property
is returned. If no defined property is found the search will continue in the ancestors of BaseTagName1.
If again no defined property is found the search will continue in the second BaseTagName2 in the list,
and so on. If no defined property is found at all, a compiler error is triggered.

Example:

1 namespace Dumux {

2 namespace Properties {

3 namespace TTag {

4 struct MyBaseTypeTag1 {};

5 struct MyBaseTypeTag2 {};

6

7 struct MyDerivedTypeTag { using InheritsFrom = std::tuple<MyBaseTypeTag1, MyBaseTypeTag2>; };

8 } // end namespace TTag

9 }}

Defining new Property Tags

New property tags are defined using

1 template<class TypeTag, class MyTypeTag>

2 struct NewPropTagName { using type = UndefinedProperty; };

Example:

1 namespace Dumux {

2 namespace Properties {

3 template<class TypeTag, class MyTypeTag>

4 struct MyPropertyTag { using type = UndefinedProperty; };

5 }}

If you need to forward declare a property use

1 // forward declaration

2 template<class TypeTag, class MyTypeTag>

3 struct NewPropTagName;

Defining Properties

The value of a property on a given node of the type tag hierarchy is defined using

1 template<class TypeTag>

2 struct PropertyTagName<TypeTag, TTag::TypeTagName>

3 {

4 // arbitrary body of a struct

5 };

38

6 Advanced DuMux – Detailed Instructions

This means a property is defined for a specific type tag node TTag::TypeTagName by providing a
partial template specialization of PropertyTagName. The body typically contains either the alias type,
or a data member value. However, you can of course write in the body whatever you like.

1 template<class TypeTag>

2 struct PropertyTagName<TypeTag, TTag::TypeTagName> { using type = type; };

3

4 template<class TypeTag>

5 struct PropertyTagName<TypeTag, TTag::TypeTagName> { static constexpr bool value = booleanValue; };

6

7 template<class TypeTag>

8 struct PropertyTagName<TypeTag, TTag::TypeTagName> { static constexpr int value = integerValue; };

Example:

1 namespace Dumux {

2 namespace Properties {

3

4 // Create new type tag

5 namespace TTag {

6 struct MyTypeTag {};

7 }

8

9 // Define some properties

10 template<class TypeTag, class MyTypeTag> struct MyCustomProperty { using type = UndefinedProperty; };

11 template<class TypeTag, class MyTypeTag> struct MyType { using type = UndefinedProperty; };

12 template<class TypeTag, class MyTypeTag> struct MyBoolValue { using type = UndefinedProperty; };

13 template<class TypeTag, class MyTypeTag> struct MyIntValue { using type = UndefinedProperty; };

14 template<class TypeTag, class MyTypeTag> struct MyScalarValue { using type = UndefinedProperty; };

15

16 // Set the properties for the new type tag

17 template<class TypeTag>

18 struct MyCustomProperty<TypeTag, TTag::MyTypeTag>

19 {

20 static void print()

21 { std::cout << "Hello, World!\n"; }

22 };

23

24 template<class TypeTag>

25 struct MyType<TypeTag, TTag::MyTypeTag> { using type = unsigned int; };

26

27 template<class TypeTag>

28 struct MyBoolValue<TypeTag, TTag::MyTypeTag> { static constexpr bool value = true; };

29

30 template<class TypeTag>

31 struct MyIntValue<TypeTag, TTag::MyTypeTag> { static constexpr int value = 12345; };

32

33 template<class TypeTag>

34 struct MyScalarValue<TypeTag, TTag::MyTypeTag> { static constexpr double value = 12345.67890; };

35 }}

Retrieving Property Values

The type of a property can be retrieved using

1 using Prop = GetProp<TypeTag, Properties::PropertyTag>;

There is a helper struct and a helper function to retrieve the type and value members of a property

1 using PropType = GetPropType<TypeTag, Properties::PropertyTag>;

2 constexpr auto propValue = getPropValue<TypeTag, Properties::PropertyTag>();

39

6 Advanced DuMux – Detailed Instructions

Example:

1 template <TypeTag>

2 class MyClass {

3 // retrieve the ::value attribute of the ’UseMoles’ property

4 static constexpr bool useMoles = getPropValue<TypeTag, Properties::UseMoles>();

5 static constexpr bool useMoles2 = GetProp<TypeTag, Properties::UseMoles>::value; // equivalent

6

7 // retrieve the ::type attribute of the ’Scalar’ property

8 using Scalar = GetPropType<TypeTag, Properties::Scalar>;

9 using Scalar2 = GetProp<TypeTag, Properties::Scalar>::type; // equivalent

10 };

Nesting Property Definitions

Inside property definitions there is access to all other properties which are defined somewhere on the
type tag hierarchy. The node for which the current property is requested is available via the template
argument TypeTag. Inside property class bodies GetPropType can be used to retrieve other properties
and create aliases.

Example:

1 template<class TypeTag>

2 struct Vector<TypeTag, TTag::MyModelTypeTag>

3 {

4 using Scalar = GetPropType<TypeTag, Properties::Scalar>;

5 using type = std::vector<Scalar>;

6 };

6.5.3 A Self-Contained Example

As a concrete example, let us consider some kinds of cars: Compact cars, sedans, trucks, pickups,
military tanks and the Hummer-H1 sports utility vehicle. Since all these cars share some characteristics,
it makes sense to inherit those from the closest matching car type and only specify the properties which
are different. Thus, an inheritance diagram for the car types above might look like outlined in Figure
6.9a.

Using the DuMux property system, this inheritance hierarchy is defined by:

7 #include <dumux/common/propertysystem.hh>

8 #include <iostream>

9

10 namespace Dumux {

11 namespace Properties {

12 namespace TTag{

13 struct CompactCar {};

14 struct Truck {};

15 struct Tank {};

16

17 struct Sedan { using InheritsFrom = std::tuple<CompactCar>; };

18 struct Pickup { using InheritsFrom = std::tuple<Truck, Sedan>; };

19 struct HummerH1 { using InheritsFrom = std::tuple<Tank, Pickup>; };

20 }}} // end namespace TTag

Figure 6.9b lists a few property names which make sense for at least one of the nodes of Figure 6.9a.
These property names can be defined as follows:

40

6 Advanced DuMux – Detailed Instructions

Compact car

Sedan

Truck

Pickup

Tank

Hummer

(a)

GasUsage

TopSpeed

NumSeats

AutomaticTransmission

CannonCalibre

Payload

(b)

Figure 6.9: (a) A possible property inheritance graph for various kinds of cars. The lower nodes inherit
from higher ones; Inherited properties from nodes on the right take precedence over the
properties defined on the left. (b) Property names which make sense for at least one of
the car types of (a).

21 template<class TypeTag, class MyTypeTag>

22 struct TopSpeed { using type = UndefinedProperty; }; // [km/h]

23 template<class TypeTag, class MyTypeTag>

24 struct NumSeats { using type = UndefinedProperty; }; // []

25 template<class TypeTag, class MyTypeTag>

26 struct CanonCaliber { using type = UndefinedProperty; }; // [mm]

27 template<class TypeTag, class MyTypeTag>

28 struct GasUsage { using type = UndefinedProperty; }; // [l/100km]

29 template<class TypeTag, class MyTypeTag>

30 struct AutomaticTransmission { using type = UndefinedProperty; }; // true/false

31 template<class TypeTag, class MyTypeTag>

32 struct Payload { using type = UndefinedProperty; }; // [t]

So far, the inheritance hierarchy and the property names are completely separate. What is missing
is setting some values for the property names on specific nodes of the inheritance hierarchy. Let us
assume the following:

• For a compact car, the top speed is the gas usage in l/100km times 30, the number of seats is 5
and the gas usage is 4 l/100km.

• A truck is by law limited to 100 km/h top speed, the number of seats is 2, it uses 18 l/100km and
has a cargo payload of 35 t.

• A tank exhibits a top speed of 60 km/h, uses 65 l/100km and features a 120 mm diameter canon

• A sedan has a gas usage of 7 l/100km, as well as an automatic transmission, in every other aspect
it is like a compact car.

• A pick-up truck has a top speed of 120 km/h and a payload of 5 t. In every other aspect it is like
a sedan or a truck but if in doubt, it is more like a truck.

• The Hummer-H1 SUV exhibits the same top speed as a pick-up truck. In all other aspects it is
similar to a pickup and a tank, but, if in doubt, more like a tank.

Using the DuMux property system, these assumptions are formulated using

41

6 Advanced DuMux – Detailed Instructions

33 template<class TypeTag>

34 struct TopSpeed<TypeTag, TTag::CompactCar>

35 {static constexpr int value = getPropValue<TypeTag, Properties::GasUsage>() * 30};

36

37 template<class TypeTag>

38 struct NumSeats<TypeTag, TTag::CompactCar> { static constexpr int value = 5; };

39

40 template<class TypeTag>

41 struct GasUsage<TypeTag, TTag::CompactCar> { static constexpr int value = 4; };

42

43 template<class TypeTag>

44 struct TopSpeed<TypeTag, TTag::Truck> { static constexpr int value = 100; };

45

46 template<class TypeTag>

47 struct NumSeats<TypeTag, TTag::Truck> { static constexpr int value = 2; };

48

49 template<class TypeTag>

50 struct GasUsage<TypeTag, TTag::Truck> { static constexpr int value = 18; };

51

52 template<class TypeTag>

53 struct Payload<TypeTag, TTag::Truck> { static constexpr int value = 35; };

54

55 template<class TypeTag>

56 struct TopSpeed<TypeTag, TTag::Tank> { static constexpr int value = 60; };

57

58 template<class TypeTag>

59 struct GasUsage<TypeTag, TTag::Tank> { static constexpr int value = 65; };

60

61 template<class TypeTag>

62 struct CanonCaliber<TypeTag, TTag::Tank> { static constexpr int value = 120; };

63

64 template<class TypeTag>

65 struct GasUsage<TypeTag, TTag::Sedan> { static constexpr int value = 7; };

66

67 template<class TypeTag>

68 struct AutomaticTransmission<TypeTag, TTag::Sedan> { static constexpr bool value = true; };

69

70 template<class TypeTag>

71 struct TopSpeed<TypeTag, TTag::Pickup> { static constexpr int value = 120; };

72

73 template<class TypeTag>

74 struct Payload<TypeTag, TTag::Pickup> { static constexpr int value = 5; };

75

76 template<class TypeTag>

77 struct TopSpeed<TypeTag, TTag::HummerH1>

78 { static constexpr int value = getPropValue<TypeTag, TTag::Pickup::TopSpeed<TypeTag>>(); };

Now property values can be retrieved and some diagnostic messages can be generated. For example

79 int main()

80 {

81 std::cout << "top speed of sedan: " << getPropValue<Properties::TTag::Sedan, Properties::TopSpeed>() << "\n";

82 std::cout << "top speed of truck: " << getPropValue<Properties::TTag::Truck, Properties::TopSpeed>() << "\n";

83 }

will yield the following output:

$ top speed of sedan: 210

$ top speed of truck: 100

42

6 Advanced DuMux – Detailed Instructions

6.6 Input and Output

This section briefly explains grid generation in DuMux, summarizes the grid formats that can be used
by DuMux and introduces the DuMux GridManager. Finally, this section informs about handling
output in DuMux.

6.6.1 Supported grid file formats

DuMux can read grids from file using the Dune Grid Format (DGF), the Gmsh mesh format (MSH),
or the Eclipse grid format (GRDECL). Using the class Dumux::VTKReader, DuMux has experimental
support for reading grids and data from VTK files.

Dune Grid Format

Most of our DuMux tests use the Dune Grid Format (DGF) to read in grids. A detailed description of
the DGF format and some examples can be found in the DUNE doxygen documentation (Modules →
I/O → Dune Grid Format (DGF)). To generate larger or more complex DGF files, we recommend
to write your own scripts, e.g, in C++, Matlab or Python.

The DGF format can also be used to read in spatial parameters defined on the grid. These parameters
can be defined on nodes as well as on the elements. An example for predefined parameters on a grid
can be found in dumux/test/porousmediumflow/co2/implicit/.

Gmsh Mesh Format

Gmsh is an open-source flexible grid generator for unstructured finite-element meshes ([10], http:

//geuz.org/gmsh/). DuMux supports the default Gmsh mesh format (MSH). For the format specifics
and how to create grids with Gmsh, e.g., using the provided GUI, we refer to the Gmsh documentation
(http://geuz.org/gmsh/doc/texinfo/gmsh.html).

The MSH format can contain element and boundary markers defined on the grid. Thus, boundaries
can be easily marked as, e.g., inflow boundaries using Gmsh. Further, the format supports higher
order elements. They can be used to create boundary parametrization supported by, e.g., the grid
manager UGGrid. An example can be found in dumux/test/io/gridmanager.

Eclipse Grid Format

The Eclipse Grid Format (GRDECL) is commonly used for corner-point grids. Such grids consist of
hexahedra, which are described by eight points on so-called pillars. A special feature of corner-point
geometries is that points on pillars can degenerate, meaning that two neighboring points on a pillar
can coincide. Furthermore, faces are, in general, bi-linear and cells can be non-convex. This allows for
the accurate description of faults, layers, or wells, occurring in geological environments.

Furthermore, petrophysical properties can be defined (for each cell), by using eclipse-specific key-
words, e.g. PORO, PERMX, PERMY.

DuMux supports the Eclipse Grid Format by using the opm-grid module (see (https://opm-project.
org). An example can be found in dumux/test/porousmediumflow/2p/implicit/cornerpoint.

43

http://geuz.org/gmsh/
http://geuz.org/gmsh/
http://geuz.org/gmsh/doc/texinfo/gmsh.html
https://opm-project.org
https://opm-project.org

6 Advanced DuMux – Detailed Instructions

Other Grid Formats

Grid formats other than DGF, MSH, GRDECL, VTK will have to be converted to the DGF, MSH,
GRDECL, VTK format before they can be used in DuMux. If conversion is not an option, another
possibility would be to write your own GridManagers. Examples of other grid formats, which have
previously been either converted or custom-created in DuMux, are ArtMesh grids (fractured network
grids), and ICEM grids (CAD developed grids).

6.6.2 The DuMux GridManager

The Dumux::GridManager class constructs the grid from information in the input file and handles the
data. Currently, supported Dune grid interface implementations are YaspGrid, OneDGrid, dune-uggrid,
dune-alugrid, dune-foamgrid, dune-subgrid, opm-grid (cornerpoint grids) and dune-spgrid. Grids
can be constructed from a DGF or MSH file by simply providing the filename to the grid in the Grid

group 1 of the input file:

1 [Grid]

2 File = mydgfgrid.dgf

If you are using an unstructured grid interface like UGGrid or ALUGrid, constructing a grid from a
MSH is just changing a line:

1 [Grid]

2 File = mygmshgrid.msh

DuMux will tell you in case your selected grid manager does not support reading MSH files.
You want to initially refine your grid? It’s just adding a line:

1 [Grid]

2 File = mydgfgrid.dgf

3 Refinement = 4

When reading a MSH file, further parameters are recognized. Verbose enables verbose output
on grid construction when set to 1. BoundarySegments enables reading parameterized boundaries.
PhysicalEntities enables reading boundary and element flags.

Parameters specific to the grid implementation

The Dumux::GridManager supports also a selection of parameters that are specific to the chosen grid
manager. To give an example, we take a look at the unstructured grid UGGrid. UGGrid supports
red-green refinement per default. One can turn off the green closure by setting the grid’s closure type

1 [Grid]

2 File = mydgfgrid.dgf

3 ClosureType = None # or Green

For all available parameters see the Doxygen documentation.

1Note, that group name Grid is the default group name and can be customized in your problem changing the string
property GridParameterGroup. This way, it is possible, e.g., for problems with more than one grid, to set different
group names for each grid, thus configuring them separately.

44

6 Advanced DuMux – Detailed Instructions

Structured grids

If you want to construct a structured grid without using a specific grid file, insert the following into
the input file:

1 [Grid]

2 LowerLeft = 00 0

3 UpperRight = 111

4 Cells = 1010 20

where LowerLeft is a vector to the lower left corner of the grid and UpperRight a vector to the upper
right corner. Cells is a vector with the number of cells in each coordinate direction. Note, that for a
grid in a two-dimensional world, the vectors only have two entries.

Depending on the grid manager, further parameters are recognized. UGGrid, for example, supports
simplex elements as well as hexahedral elements (called “cube” in DUNE). When creating a structured
grid, we can select the cell type as follows

1 [Grid]

2 LowerLeft = 00 0

3 UpperRight = 111

4 Cells = 1010 20

5 CellType = Cube # or Simplex

For all available parameters see the Doxygen documentation.

Other DuMux GridManagers

• CakeGridManager: Provides a method to create a piece of cake grid.

• CpGridManager: Reads the GRDECL file and generates a corner-point grid.

• SubgridGridManager: Creates a dune-subgrid for some given host grid.

6.6.3 Input and Output formats

VTK file format

Dumux allows to write out simulation results via the VtkOutputModule. For every print-out step,
a single VTU file is created. For parallel simulations one file per print-out step is generated for
each processor. The PVD file groups the single VTU files and contains additionally the time step
information. The VTK file format is supported by common visualisation programs like ParaView,
VisIt, and Tecplot.

Customize the VTK output

Using the respective initOutputModule function of the model IOFields, a default set of variables
is stored in the VTK files. It is also possible to add further variables, using the member function
addField of the VtkOutputModule. For example, to add a variable called temperatureExact:

1 vtkWriter.addField(problem->getExactTemperature(), "temperatureExact");

The first input argument of this method is the value of the additional variable, provided by a method
of the corresponding problem. If it does not already exists, the user has to provide this method.

45

6 Advanced DuMux – Detailed Instructions

1 //! get the analytical temperature

2 const std::vector<Scalar>& getExactTemperature()

3 {

4 return temperatureExact_;

5 }

It is important that the life-time of the added field exceeds the life-time of the writer. That means
you can’t pass temporaries to the addField function. The vector has to be stored somewhere, e.g. in
the program main file.

The second input argument is the name of the additional variable (as it should be written in the
VTK files). The example above is taken from:
test/porousmediumflow/1pnc/implicit/test 1p2cni convection fv.cc

VTK as input format

There is experimental support for reading data and grids from VTK files. Have a look at the
Dumux::VTKReader class.

Gnuplot interface

DuMux provides a small interface to GNUPlot, which can be used to plot results and generate image
files (e.g., png). To use the gnuplot, gnuplot has to be installed. For more information see 5.6.2.

Container I/O

DuMux supports writing to file from and reading to some standard C++ containers like std::vector<double>
or std::vector<Dune::FieldVector>. If you want to read and write simple vectors, have a look at
the header dumux/io/container.hh.

Matrix and Vector I/O

dune-istl supports writing and reading vectors and matrices to/from different format. For example
you can write a matrix in a sparse matrix format that can be read by Matlab (see dune/istl/io.hh).

6.7 Parallel Computation

This section explains how DuMux can be used on multicore / multinode systems.
There are different concepts and methods for parallel programming, which are often grouped in

shared-memory and distributed-memory approaches. The parallelization in DuMux is based on the
model supported by Dune which is currently based on Message Passing Interface (MPI) (distributed-
memory approach).

The main idea behind the MPI parallelization is the concept of domain decomposition. For parallel
simulations, the computational domain is split into subdomains and one process (rank) is used to solve
the local problem of each subdomain. During the global solution process, some data exchange between
the ranks/subdomains is needed. MPI is used to send data to other ranks and to receive data from other
ranks. The domain decomposition in Dune is handled by the grid managers. The grid is partitioned
and distributed on several nodes. Most grid managers contain own domain decomposition methods to

46

6 Advanced DuMux – Detailed Instructions

split the computational domain into subdomains. Some grid managers also support external tools like
METIS, ParMETIS, PTScotch or ZOLTAN for partitioning. On the other hand, linear algebra types
such as matrices and vectors do not know that they are in a parallel environment. Communication is
then handled by the components of the parallel solvers. Currently, the only parallel solver backend is
Dumux::AMGBackend, a parallel AMG-preconditioned BiCGSTAB solver.

In order for DuMux simulation to run in parallel, an MPI library (e.g. OpenMPI, MPICH or
IntelMPI) implementation must be installed on the system.

6.7.1 Prepare a Parallel Application

Not all parts of DuMux can be used in parallel. In order to switch to the parallel Dumux::AMGBackend
solver backend include the respective header

1 #include <dumux/linear/amgbackend.hh>

Second, the linear solver must be switched to the AMG backend

1 using LinearSolver = Dumux::AMGBackend<TypeTag>;

and the application must be recompiled. The parallel Dumux::AMGBackend instance has to be con-
structed with a Dune::GridView object and a mapper, in order to construct the parallel index set
needed for communication.

1 auto linearSolver = std::make_shared<LinearSolver>(leafGridView, fvGridGeometry->dofMapper());

6.7.2 Run a Parallel Application

The starting procedure for parallel simulations depends on the chosen MPI library. Most MPI imple-
mentations use the mpirun command

mpirun -np <n_cores> <executable_name>

where -np sets the number of cores (n cores) that should be used for the computation. On a cluster
you usually have to use a queuing system (e.g. slurm) to submit a job. Check with your cluster
administrator how to run parallel applications on the cluster.

6.7.3 Handling Parallel Results

For serial computations, DuMux produces single vtu-files as default output format. During a simula-
tion, one VTU file is written for every output step. In the parallel case, one VTU file for each step
and processor is created. For parallel computations, an additional variable "process rank" is written
into the file. The process rank allows the user to inspect the subdomains after the computation. The
parallel VTU files are combined in a single pvd file like in sequential simulations that can be opened
with e.g. ParaView.

47

Bibliography

[1] Ivar Aavatsmark. An introduction to multipoint flux approximations for quadrilateral grids.
Computational Geosciences, 6:405–432, 2002.

[2] M. Acosta, C. Merten, G. Eigenberger, H. Class, R. Helmig, B. Thoben, and H. Müller-Steinhagen.
Modeling non-isothermal two-phase multicomponent flow in the cathode of PEM fuel cells. Journal
of Power Sources, page in print, 2006. URL https://dx.doi.org/10.1016/j.jpowsour.2005.

12.068.

[3] Martin Alkämper, Andreas Dedner, Robert Klöfkorn, and Martin Nolte. The DUNE-ALUGrid
Module. Archive of Numerical Software, 4(1):1–28, 2016. ISSN 2197-8263. doi: 10.11588/ans.
2016.1.23252. URL http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/

23252.

[4] ALUGrid Homepage. URL https://www.dune-project.org/modules/dune-alugrid/.

[5] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger,
and O. Sander. A Generic Grid Interface For Parallel and Adaptive Scientific Comput-
ing. Part II: implementation and tests in DUNE. Computing, 82(2):121–138, 2008. doi:
10.1007/s00607-008-0004-9. URL https://dx.doi.org/10.1007/s00607-008-0004-9.

[6] A. Bielinski. Numerical Simulation of CO2 Sequestration in Geological Formations. PhD the-
sis, Institut für Wasserbau, Universität Stuttgart, 2006. URL http://dx.doi.org/10.18419/

opus-252.

[7] A. Burri, A. Dedner, R. Klöfkorn, and M. Ohlberger. An efficient implementation of an adaptive
and parallel grid in DUNE. In Computational Science and High Performance Computing II,
volume 91, pages 67–82. Springer, 2006.

[8] H. Class, R. Helmig, and P. Bastian. Numerical Simulation of Nonisothermal Multiphase
Multicomponent Processes in Porous Media – 1. An Efficient Solution Technique. Advances
in Water Resources, 25:533–550, 2002. doi: 10.1016/S0309-1708(02)00014-3. URL http:

//dx.doi.org/10.1016/S0309-1708(02)00014-3.

[9] DUNE Homepage. URL http://www.dune-project.org.

[10] C. Geuzaine and J. F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in pre-and
post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):
1309–1331, 2009. doi: 10.1002/nme.2579. URL http://dx.doi.org/10.1002/nme.2579.

[11] UG Homepage. URL https://www.dune-project.org/modules/dune-uggrid/.

48

https://dx.doi.org/10.1016/j.jpowsour.2005.12.068
https://dx.doi.org/10.1016/j.jpowsour.2005.12.068
http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/23252
http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/23252
https://www.dune-project.org/modules/dune-alugrid/
https://dx.doi.org/10.1007/s00607-008-0004-9
http://dx.doi.org/10.18419/opus-252
http://dx.doi.org/10.18419/opus-252
http://dx.doi.org/10.1016/S0309-1708(02)00014-3
http://dx.doi.org/10.1016/S0309-1708(02)00014-3
http://www.dune-project.org
http://dx.doi.org/10.1002/nme.2579
https://www.dune-project.org/modules/dune-uggrid/

	Introduction
	Quick Start
	Prerequisites
	Obtaining code and configuring all modules with a script
	A first test run of DuMuX

	Detailed Installation, Documentation, and Externals
	Obtaining Source Code for DUNE and DuMuX
	Build of DUNE and DuMuX
	The First Run of a Test Application
	Building Documentation
	Doxygen
	Handbook

	External Libraries and Modules
	List of External Libraries and Modules

	Learning to use DuMuX
	Further Practice

	Overview and Infrastructure
	Directory Structure
	Setup of new Folders and new Tests
	Parameters in DuMuX
	Parameter Values

	Restart DuMuX Simulations
	Developing DuMuX
	Communicate with DuMuX Developers
	Coding Guidelines
	Tips and Tricks

	External Tools
	Git
	Gnuplot
	Gstat
	ParaView

	Assembling the linear system
	Newton's method
	Structure of matrix and vectors

	Advanced DuMuX – Detailed Instructions
	Physical Basics
	Basic Definitions and Assumptions
	Gas mixing laws
	Dalton's law
	Amagat's law
	Ideal gases

	Available Models

	Temporal Discretization and Solution Strategies
	Temporal discretization
	Solution strategies to solve equations

	Spatial Discretization
	Cell Centered Finite Volume Methods – A Short Introduction
	Tpfa Method
	Mpfa Method

	Box Method – A Short Introduction
	Staggered Grid – A Short Introduction

	Steps of a DuMuX Simulation
	Structure – by Content
	Structure – by Implementation

	Property System
	Motivation and features
	How-to
	Defining Type Tags
	Defining new Property Tags
	Defining Properties
	Retrieving Property Values
	Nesting Property Definitions

	A Self-Contained Example

	Input and Output
	Supported grid file formats
	Dune Grid Format
	Gmsh Mesh Format
	Eclipse Grid Format
	Other Grid Formats

	The DuMuX GridManager
	Parameters specific to the grid implementation
	Structured grids
	Other DuMuX GridManagers

	Input and Output formats
	VTK file format
	Customize the VTK output
	VTK as input format
	Gnuplot interface
	Container I/O
	Matrix and Vector I/O

	Parallel Computation
	Prepare a Parallel Application
	Run a Parallel Application
	Handling Parallel Results

