
Handbook

Version 3.7,
Handbook version from March 27, 2024

Lehrstuhl für Hydromechanik und Hydrosystemmodellierung,

Universität Stuttgart, Paffenwaldring 61, D-70569 Stuttgart, Germany

http://dumux.org

http://dumux.org

Contents

1 Introduction 3

2 Overview and Infrastructure 5
2.1 Directory Structure . 5
2.2 Setup of new Folders and new Tests . 5
2.3 Parameters in DuMux . 7
2.4 Restart DuMux Simulations . 9
2.5 Developing DuMux . 9
2.6 External Tools . 11
2.7 Scripts . 12
2.8 Assembling the linear system . 14

3 Advanced DuMux – Detailed Instructions 16
3.1 Physical Basics . 16
3.2 Temporal Discretization and Solution Strategies . 23
3.3 Spatial Discretization . 24
3.4 Steps of a DuMux Simulation . 31
3.5 Input and Output . 32

2

1 Introduction

DuMux aims to be a generic framework for the simulation of multiphase fluid flow and transport pro-
cesses in porous media using continuum mechanical approaches. At the same time, DuMux aims to
deliver top-notch computational performance, high flexibility, sound software architecture and the abil-
ity to run on anything from single processor systems to highly parallel supercomputers with specialized
hardware architectures.
The means to achieve these somewhat contradictory goals are the thorough use of object-oriented

design in conjunction with template programming. These requirements call for C++ as the implemen-
tation language.
One of the more complex issues when dealing with parallel continuum models is managing the grids

used for the spatial discretization of the physical model. To date, no generic and efficient approach
exists for all possible cases, so DuMux is built on top of DUNE, the Distributed and Unified Numerics
Environment [10]. DUNE provides a generic interface to many existing grid management libraries
such as UG [14], ALUGrid [4, 3], and a few more. DUNE also extensively uses template programming
in order to achieve minimal overhead when accessing the underlying grid libraries1.

Figure 1.1: A high-level overview of DUNE’s design is available on the project’s web site [10].

DUNE’s grid interface is independent of the spatial dimension of the underlying grid. For this
purpose, it uses the concept of co-dimensional entities. Roughly speaking, an entity of co-dimension
0 constitutes a cell, co-dimension 1 entities are faces between cells, co-dimension 2 are edges, and so
on until co-dimension n which are the cell’s vertices. The DUNE grid interface generally assumes that
all entities are convex polytopes, which means that it must be possible to express each entity as the
convex hull of a set of vertices. For the sake of efficiency, all entities are further expressed in terms
of so-called reference elements, which are transformed to the actual spatial incarnation within the
grid by a so-called geometry function. Here, a reference element for an entity can be thought of as a
prototype for the actual grid entity. For example, if we used a grid that applied hexahedrons as cells,

1In fact, the performance penalty resulting from the use of DUNE’s grid interface is usually negligible [8].

3

1 Introduction

the reference element for each cell would be the unit cube [0, 1]3, and the geometry function would scale
and translate the cube so that it matches the grid’s cell. A quick overview of reference elements and the
related numbering can be obtained from the DUNE cheat sheet (https://www.dune-project.org/
pdf/dune-cheat-sheet.pdf). For a more thorough description of DUNE’s grid definition, see [5].

In addition to the grid interface, DUNE also provides quite a few additional modules, of which the
dune-localfunctions and dune-istl modules are the most relevant in the context of this handbook.
dune-localfunctions provides a set of generic finite element shape functions, while dune-istl is the
Iterative Solver Template Library and provides generic, highly optimized linear algebra routines for
solving the generated systems.
DuMux comes in the form of an additional module dumux. It depends on the DUNE core modules

dune-common,dune-geometry, dune-grid, dune-istl, and dune-localfunctions. The main inten-
tion of DuMux is to provide a framework for easy and efficient implementation of new physical models
for porous media flow problems, ranging from problem formulation and the selection of spatial and
temporal discretization schemes as well as nonlinear solvers, to general concepts for model coupling.
Moreover, DuMux includes ready-to-use numerical models and a few example applications.

This document is the handbook to a new minor version update of DuMux: version 3.7. The release
contains improvements and new features compared to version 3.6. The update is backwards compatible
with the last release 3.6. To facilitate the transition for our users, we have created a changelog
helping to update programs from version 3.6 to version 3.7 and giving an overview of new capabilities.
It is available online at https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/blob/

master/CHANGELOG.md. We highly recommend all our users to transition with us to the most recent
version of DuMux and wish everyone an exciting simulation experience.

4

https://www.dune-project.org/pdf/dune-cheat-sheet.pdf
https://www.dune-project.org/pdf/dune-cheat-sheet.pdf
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/blob/master/CHANGELOG.md
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/blob/master/CHANGELOG.md

2 Overview and Infrastructure

This chapter provides an overview of the general structure in DuMux (2.1) and gives help for basic
work with DuMux (2.2-2.5). Further, it presents useful external tools (2.6) and basic concepts (2.8).

2.1 Directory Structure

DuMux has the following folder structure, which is similar to other DUNE modules.

� bin: binaries, e.g. used for the automatic testing, post-processing, installation

� cmake: the configuration options for building DuMux

� doc: files necessary for the Doxygen documentation and this handbook, and various logos

� dumux: the main folder, containing the source files. See Fig. 2.1 for a visualized structure. For
more information on the models, have a look at the Doxygen documentation.

� examples: well-documented examples of applying DuMux to typical physical problems. In the
README.md files, the setup is explained, the used code is presented as well as documented and
images resulting from the simulation are included. The README.md files are located directly in
the subfolders of examples and can be displayed by web browsers.

� test: tests for each numerical model and some functionality. The structure is equivalent to
the dumux folder, the references folder contains solutions for the automatic testing. Each test
program consist of a main file main.cc, the problem definition *problem.hh (specifying initial
and boundary conditions), and an input file params.input. If necessary, spatially dependent
parameters are defined in *spatialparameters.hh. For more detailed descriptions of the tests,
please have a look at the Doxygen documentation.

2.2 Setup of new Folders and new Tests

This section describes how to set up a new folder and how to tell the build system there is a new one.

Adding new Folders

1) create new folder with content

2) adapt the CMakeList.txt in the folder above by adding a line with add_subdirectory(NEW_FOLDER)

3) create a CMakeList.txt in the newly created folder

4) go to your build-directory and type make to re-configure the system

5

2 Overview and Infrastructure

dumux

porousmediumflow models
Specific definition for porous medium flow simulations for all models:
implementation of equations, model specific properties and indices.

parallel Helper files for parallel simulations.

nonlinear Newton’s method.

multidomain

boundary Coupling at the domain boundaries.

facet Mixed-dimensional coupling at facets.

embedded Embedding a lower-dimensional model into a higher-dimensional one

Common infrastructure to couple multiple domains, models or physics.

material

spatialparams
Base class for all spatially dependent variables, like permeability and
porosity. Includes spatial averaging routines. All other properties are
specified in the specific files of the respective models.

solidsystems Solid systems express the thermodynamic properties of a solid.

solidstates
Solid states are responsible for caching the thermodynamic configuration
of a solid system at a given spatial and temporal position.

fluidsystems Fluid systems express the thermodynamic relations between quantities.

fluidstates
Fluid states are responsible for caching the thermodynamic configura-
tion of a fluid system at a given spatial and temporal position.

fluidmatrixint.
Constitutive relationships (e.g. capillary pressures, relative permeabili-
ties)

eos Equations of state (eos) are auxiliary classes which provide relations be-
tween a fluid phase’s temperature, pressure, composition and density.

constraintsolvers
Constraint solvers to make sure that the resulting fluid state is consis-
tent with a given set of thermodynamic equations.

components
Properties of a pure chemical substance (e.g. water) or pseudo sub-
stance (e.g. air).

chemistry Files needed to account for, e.g. electro-chemical processes as in a fuel
cell.

binarycoefficients
Binary coefficients (like binary diffusion coefficients) and those needed
for the constitutive relationships (e.g. Henry coefficient)

linear Linear solver backend.

io
Additional in-/output possibilities like restart files, gnuplot-interface,
VTKWriter extensions and files for grid generation.

geomechanics models Elastic and poro-elastic geomechanics models.

freeflow models
Single-phase free flow models using Navier-Stokes and eddy-viscosity
based Reynolds-averaged Navier-Stokes turbulence models, and shallow
water equation model.

flux Collection of classes used to calculate advective and diffusive fluxes.

discretization
Common methods for all discretizations (box, cell-centered TP-
FA/MPFA, staggered grid): variable caching, advective and diffusive
fluxes, ...

common

typetraits Helper classes to query type information on compile-time.

properties Base properties for all models.

geometry Geometrical algorithms

Common files of all models: definition of boundary conditions, time
stepping, splines, dimensionless numbers ...

assembly Matrix assembler and residual for all discretization methods.

adaptive Data transfer on new grid, adaptation indicators.

Figure 2.1: Structure of the directory dumux containing the DuMux source files.
6

2 Overview and Infrastructure

Adding new Test Programs To add a test use the add dune test macro within the CMakeList.txt
file. The macro can be used with a variable amount of arguments. A simple call could look like this:

 dumux_add_test(NAME my_test

 SOURCES main.cc

 CMD_ARGS my_test params.input)

Here, we create an executable called my test from a source file main.cc. The name of the test will
also be my test (has to be unique). The last argument specifies a command - here, we just run the
executable my test with an input file params.input. For more advanced uses of the add dune test

macro, have a look at the test directory. A complete documentation is given under https://www.

dune-project.org/sphinx/core-2.7/.

2.3 Parameters in DuMux

Simulation parameters can be parsed to the program via a parameter file or via the command line.
After having run the example application from the getting started guide you will get the following

output at the end of the simulation run 1:

Runtime-specified parameters used:

[Grid]

Cells = "48 32"

UpperRight = "6 4"

[Newton]

EnablePartialReassembly = "true"

[Problem]

EnableGravity = "true"

Name = "2p"

[SpatialParams]

LensLowerLeft = "1.0 2.0"

LensUpperRight = "4.0 3.0"

[TimeLoop]

DtInitial = "250"

TEnd = "3000"

Global default parameters used:

[Assembly]

NumericDifferenceMethod = "1"

[Flux]

UpwindWeight = "1.0"

[LinearSolver]

MaxIterations = "250"

ResidualReduction = "1e-13"

Verbosity = "0"

[LinarSolver.Preconditioner]

Iterations = "1"

Relaxation = "1.0"

[Newton]

EnableAbsoluteResidualCriterion = "false"

1If you did not get the output, add Parameters::print(); to your main file.

7

https://www.dune-project.org/sphinx/core-2.7/
https://www.dune-project.org/sphinx/core-2.7/

2 Overview and Infrastructure

EnableChop = "false"

EnableResidualCriterion = "false"

EnableShiftCriterion = "true"

MaxAbsoluteResidual = "1e-5"

MaxRelativeShift = "1e-8"

MaxSteps = "18"

MinSteps = "2"

ResidualReduction = "1e-5"

SatisfyResidualAndShiftCriterion = "false"

TargetSteps = "10"

UseLineSearch = "false"

[TimeLoop]

MaxTimeStepSize = "1e300"

[Vtk]

AddProcessRank = "true"

AddVelocity = "false"

Unused parameters:

Grid.LowerLeft = "0 0"

A number of things can be learned:

� run-time parameters can be changed without re-compiling

� default parameters are set by default

� unused parameters are not used by the simulation (maybe typo or wrong group in input file)

2.3.1 Parameter Values

To get the value of an input parameter please use:

 static const TYPE paramname = getParam<TYPE>("GROUPNAME.PARAMNAME");

If you also want to set a default value for a parameter, just add it like this:

 static const TYPE paramname = getParam<TYPE>("GROUPNAME.PARAMNAME", default);

As this function call is relatively expensive, the respective variables should always be static (e.g.,
if used in a loop). When dealing with multiple group names, e.g., in the context of coupled models,
the following methods might be more convenient:

 auto modelParamGroup0 = "Model0";

 static const TYPE paramname0 = getParamFromGroup<TYPE>(modelParamGroup0, "GROUPNAME.PARAMNAME");

 auto modelParamGroup1 = "Model1";

 static const TYPE paramname1 = getParamFromGroup<TYPE>(modelParamGroup1, "GROUPNAME.PARAMNAME");

The FVProblem class provides a convenience function paramGroup().
The parameters can then be specified in the input file:

[Model0.Grid]

File = file0.dgf

[Model1.Grid]

File = file1.dgf

8

2 Overview and Infrastructure

2.4 Restart DuMux Simulations

DuMux has some experimental support for check-pointing (restarting paused/stopped/crashed simu-
lations). You can restart a DuMux simulation from any time point where a VTK file was written out.
This is currently only supported for sequential, non-adaptive simulations. For adaptive simulation the
full hierarchical grid has to be stored. This is usually done with the grid’s BackupRestoreFacility.
There is currently no special support by DuMux for that, but it is possible to implement a restart
using BackupRestoreFacility with plain Dune.
For VTK files the output can be read with the free function loadSolution. Grids can be read with

the Dumux::VTKReader or you can simply recreate the grid as you did in the first simulation run.
Writing double-precision floating point numbers to VTK files is available since DUNE release 2.7.

If you are using that version, it is now possible to specify output precision in the input file using
Vtk.Precision followed by either Float32, Float64, UInt32, UInt8 or Int32. Float32 is set as the
default. We especially advice the use of Float64 when working with restart files.
The restart capabilities will hopefully be improved in future versions of DuMux-3. We are looking

forward to any contributions (especially HDF5 / XDMF support, improvement of VTK support).

2.5 Developing DuMux

2.5.1 Communicate with DuMux Developers

Issues and Bug Tracking The bug-tracking system GitLab Issues offers the possibility to report bugs
or discuss new development requests. Feel free to register (if you don’t have an account at out Git yet)
and to contribute at https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/issues.

Commits, Merges, etc. To be up-to-date with the latest changes made to any git-repository, you
can use RSS Feeds. Simply click on Issues or Activity and then select a tab you are interested in and
use your favorite RSS-application for receiving the news.

Automatic Testing Dashboard The automatic testing using BuildBot helps to constantly check
the DuMux problems for compiling and running correctly. It is available at https://git.iws.

uni-stuttgart.de/buildbot/#/builders.

The General Mailing List: If you have questions, specific problems (which you really struggle to
solve on your own), or hints for the DuMux-developers, please contact the mailing list dumux@iws.

uni-stuttgart.de. You can subscribe to the mailing list via https://listserv.uni-stuttgart.

de/mailman/listinfo/dumux, then you will be informed about upcoming releases or events.

2.5.2 Coding Guidelines

Writing code in a readable manner is very important, especially for future code developers (e.g. for
adding features, debugging, etc.). For the style guide and instructions how to contribute to DuMux visit
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/blob/master/CONTRIBUTING.md.

9

https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/issues
https://git.iws.uni-stuttgart.de/buildbot/#/builders
https://git.iws.uni-stuttgart.de/buildbot/#/builders
dumux@iws.uni-stuttgart.de
dumux@iws.uni-stuttgart.de
https://listserv.uni-stuttgart.de/mailman/listinfo/dumux
https://listserv.uni-stuttgart.de/mailman/listinfo/dumux
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux/blob/master/CONTRIBUTING.md

2 Overview and Infrastructure

2.5.3 Tips and Tricks

DuMux users and developers at the LH2 are also referred to the internal confluence pages for more
information.

Optimized computation vs debugging DUNE and DuMux are built with the help of dunecontrol.
Per default, DuMux is compiled using optimization options, which leads to faster runtimes but is
unsuitable for debugging. For debug opts you can set DCMAKE BUILD TYPE to Debug or RelWithDebInfo
in your options file. You can also do this in any of the CMakeLists.txt in Dumux by adding:

 set(CMAKE_BUILD_TYPE Debug)

Afterwards rerun cmake (run cmake <path-to-build-dir>).

Dunecontrol for selected modules A complete build using dunecontrol takes some time. In many
cases not all modules need to be re-built. Pass the flag --only=dumux to dunecontrol for configuring
or building only DuMux. A more complex example would be a case in which you have to configure
and build only e.g. DUNE-grid and DuMux. This is achieved by adding --only=MODULE,dumux.

Patching Files or Modules If you want to send changes to an other developer of DuMux providing
patches can be quite smart. To create a patch simply type:

$ git diff > PATCHFILE

which creates a text file containing all your changes to the files in the current folder or its subdirectories.
To apply a patch in the same directory type:

$ patch -p1 < PATCHFILE

File Name and Line Number by Predefined Macro If you want to create output in order to later
know where some output or debug information came from, use the predefined macros FILE and
LINE :

 std::cout << "# This was written from "<< __FILE__ << ", line " << __LINE__ << std::endl;

Using DUNE Debug Streams DUNE provides a helpful feature for keeping your debug-output or-
ganized. It uses simple streams like std::cout, but they can be switched on and off for the whole
project. You can choose five different levels of severity:

5 - grave (dgrave)

4 - warning (dwarn)

3 - info (dinfo)

2 - verbose (dverb)

1 - very verbose (dvverb)

They are used as follows:

10

2 Overview and Infrastructure

 // define the minimal debug level somewhere in your code

 #define DUNE_MINIMAL_DEBUG_LEVEL 4

 Dune::dgrave << "message"; // will be printed

 Dune::dwarn << "message"; // will be printed

 Dune::dinfo << "message"; // will NOT be printed

Make headercheck: To check one header file for all necessary includes to compile the contained
code, use make headercheck. Include the option -DENABLE HEADERCHECK=1 in your opts file and run
dunecontrol. Then go to the top level in your build-directory and type make headercheck to check
all headers or press ’tab’ to use the auto-completion to search for a specific header.

2.6 External Tools

2.6.1 Git

Git is a version control tool which we use. The basic Git commands are:

� git checkout: receive a specified branch from the repository

� git clone: clone a repository; creates a local copy

� git diff: to see the actual changes compared to your last commit

� git pull: pull changes from the repository; synchronizes the repository with your local copy

� git push: push committed changes to the repository; synchronizes your local copy with the
repository

� git status: to check which files/folders have been changed

� git gui: graphical user interface, helps selecting changes for a commit

2.6.2 Gnuplot

A gnuplot interface is available to plot or visualize results during a simulation run. This is achieved
with the help of the Dumux::GnuplotInterface class provided in io/gnuplotinterface.hh.

To use the gnuplot interface you have to make some modifications in your file, e.g., your main file.
First, you have to include the corresponding header file for the gnuplot interface.

 #include <dumux/io/gnuplotinterface.hh

Second, you have to define an instance of the class Dumux::GnuplotInterface (e.g. called gnuplot).

 Dumux::GnuplotInterface<double> gnuplot;

As an example, to plot the mole fraction of nitrogen (y) over time (x), extract the variables after
each time step in the time loop. The actual plotting is done using the method of the gnuplot interface:

 gnuplot.resetPlot(); // reset the plot

 gnuplot.setXRange(0.0, 72000.0); // specify xmin and xmax

 gnuplot.setYRange(0.0, 1.0); // specify ymin and ymax

 gnuplot.setXlabel("time [s]"); // set xlabel

 gnuplot.setYlabel("mole fraction mol/mol"); // set ylabel

11

2 Overview and Infrastructure

 // set x-values, y-values, the name of the data file and the Gnuplot options

 gnuplot.addDataSetToPlot(x, y, "N2.dat", options);

 gnuplot.plot("mole_fraction_N2"); // set the name of the output file

It is also possible to add several data sets to one plot by calling addDataSetToPlot()more than once.
For more information have a look into a test including the gnuplot interface header file, the doxygen doc-
umentation of Dumux::GnuplotInterface, or the header file itself (dumux/io/gnuplotinterface.hh).

2.6.3 Gstat

Gstat is an open source software tool which generates geostatistical random fields (see www.gstat.org).
In order to use gstat, execute the bin/installexternal.py from your DuMux root directory or
download, unpack and install the tarball from the gstat-website. Then, rerun cmake (in the second
case set GSTAT ROOT in your input file to the path where gstat is installed).

2.6.4 ParaView

To visualize the simulation data you have produced using DuMux, we recommend using Paraview.
This open-source software supports DuMux ’s standard data formats, and can be operated either with
a GUI or with batching tools.

2.7 Scripts

A suite of scripts is available within the dumux repository to assist in the performance of common
tasks. These scripts can be found in the dumux/bin/ directory. The majority of these scripts began
as bash (*.sh) scripts, but most have been replaced with more portable and user-friendly Python
versions. Some of these scripts are used in the installation or the creation of working dumux-dependent
repositorities; these are outlined in section 2.7.1. Others can be used to perform post-processing tasks
after simulation data has been produced; these are outlined in section 2.7.2. In order to maintain the
suite of unit tests and examples within this repository, some testing scripts are also required; these are
outlined in section 2.7.3. All remaining tests are mentioned in section 2.7.4.

2.7.1 Repository development Scripts:

� Installation Scripts: installdumux.py and installexternal.py both have been developed to
make the installation of the base Dumux suite and any external dependencies as simple as
possible.

� Module Development: When developing within the dumux simulation environment, it is recom-
mended to do so within your own module. When sharing this module with others, or installing
it on multiple machines, it is often difficult to find exactly which version you are using so that
your work will run in different places. To simplify this, the following scripts are available in the
util/ directory:

– The script createdockerimage.py can help to create a docker image to put your work in
a container for simple delivery.

12

www.gstat.org
https://www.paraview.org/

2 Overview and Infrastructure

– In order to extract the content and dependencies within your model, extractmodulepart.py
will collect all headers used to run a specified test and collect them all in a functioning ex-
ternal module.

– To document the exact versions that have been used, the scripts getusedversions.py is
available to search each through an existing simulation dumux suite and find the branch,
commit hash, and commit date of the current implementation.

– The script create cmakelists.py can be used to integrate new header files to the dune/-
dumux cmake system.

– In order to produce an installscript that will install your repository and its dependencies
on another computer, the makeinstallscript.py is available. This script will collect all
of the dependencies and their versions using the getmoduleinfo.py and the other scripts
listed above and write a script to install a new version in the same configuration. In the
past it has been recommended to run the script test dumux.sh to ensure that the final
dunecontrol and compilation pass have worked.

2.7.2 Post-processing Scripts:

Data visualization and post processing is an integral part of any exercise in simulation. A few scripts
are available to begin with in the postprocessing/ subdirectory.

� Paraview data collection scripts: Although there are many tools available within the open-source
visualization program paraview (see 2.6.4), performing consistent data collection from your simu-
lations can be tedious when analyzing many output files. The scripts exportscreenshot2d.py,
extractlinedata.py, and extractpointdataovertime.py are each scripts that can help to
perform paraview data collection commands consistently and each produce easy to use .csv files
or images.

� Error convergence script: When evaluating errors to a reference solution across grid refinements,
the L2 error is typically evaluated. A script to help perform this is available in l2error.py.

2.7.3 Testing Scripts:

In order to ensure consistency when developing in dumux, developers are encouraged to introduce
unit tests and reference tests that can be run to ensure new code introductions do not break existing
functions. While existing simulations should each test something when the ctest command is called,
a few scripts exist in the testing/ subdirectory to make this simple to develop and quick to evaluate.

� Run tests: In order to automatically find and run tests that fit a specific criteria, the scripts
findtests.py, runtest.py and runselectedtests.py each are available. These are each used
to automate the testing process.

� Reference Solution Comparisons: The scripts fuzzycomparevtu.py and fuzzycomparedata.py

are both used to compare simulation results against reference simulation results. When running
a test, one can use these files to compare the output from the test against reference simulation
results. Should these results differ, the difference for each field is shown. These scripts are
typically directly called during testing.

13

2 Overview and Infrastructure

2.7.4 Miscellaneous:

In addition, a few miscellaneous scripts are available.

� Parameter scripts: The script doc/generate parameterlist.py is available for tracking all of
the runtime parameters used.

� Other: doc/getcontributors.sh can be used to find the names and contact information for all
commit authors over a given time period.

2.8 Assembling the linear system

The physical system is implemented as the mathematical differential equation in local operators. Du-
Mux generates the linear system automatically. Read on, to learn what is done internally.

2.8.1 Newton’s method

The differential equations are implemented in the residual form. All terms are on the left hand side
and are summed up. The terms contain values for the primary variables which are part of the solution
vector u. The sum of the terms is called residual r(u) which is a function of the solution. For example:

ϕ
∂ϱαSα

∂t
− div

(
ϱα

krα
µα

K (grad pα − ϱαg)

)
− qα︸ ︷︷ ︸

=: r(u)

= 0

We don’t know the solution u, so we use the iterative Newton’s method to obtain a good estimate
of u. We start with an initial guess u0 and calculate it’s residual r(u0). To minimize the error, we
calculate the derivative of the residual with respect to the solution. This is the Jacobian matrix

d

du
r
(
ui
)
= Jr(ui) =

(
d

dui
m

r
(
ui
)
n

)
m,n

with i denoting the Newton iteration step. Each column is the residual derived with respect to the
mth entry of ui.
The Jacobian indicates the direction where the residual increases. By solving the linear system

Jr(ui) · xi = r(ui)

we calculate the direction of maximum growth xi. We subtract it from our current solution to get a
new, better solution ui+1 = ui − xi.
We repeat the calculation of the Jacobian Jr(ui) and the direction of maximum growth xi until our

approximated solution becomes good enough.

2.8.2 Structure of matrix and vectors

To understand the meaning of an entry in the matrix or the vector of the linear system, we have to
define their structure. Both have a block structure. Each block contains the degrees of freedom (also

14

2 Overview and Infrastructure

1. CV 2. CV n. CV

. . . 1. CV

. . . 2. CV

...
...

. . .
...

. . . n. CV

...

eqIdx

0

1
...

m− 1

Figure 2.2: Structure of matrix and vector, left: block structure, right: within block

called variables or unknowns) for a control volume. The equation index is used to order the degrees
of freedom. For each control volume we have one block. The mapper is used to order the blocks.
Accessing entries follows this structure. You can access the pressure value in the third (n = 3)

sub-control volume in a solution vector sol with sol [n=1][pressureIdx]=sol[2][pressureIdx].

15

3 Advanced DuMux – Detailed Instructions

This chapter contains detailed information for those who are interested in deeper modifications of
underlying DuMux models, classes, functions, etc.

3.1 Physical Basics

Here, the basic definitions, the general models concept, and a list of models available in DuMux are
given. The actual differential equations can be found in the local residuals (see Doxygen documentation
of the model’s LocalResidual class).

3.1.1 Basic Definitions and Assumptions

Basic definitions and assumptions are given. More information can be found e.g. in [2, 6].

Phases: A phase is defined as a continuum having distinct properties (e.g. density and viscosity). If
phases are miscible, they contain dissolved portions of the substance of the other phase. Fluid
and solid phases are distinguished. The fluid phases have different affinities to the solid phases.
The phase, which has a higher affinity to the solid phases is referred to as the (more) wetting
phase. In the case of two phases, the less wetting one is called the nonwetting phase.

For compositional multi-phase models, fluid phases may be composed of several components,
while the solid phases are assumed to consist exclusively of a single component.

Components: The term component stands for constituents of the phases which can be associated with
a unique chemical species or, more generally, with a group of species exploiting similar physical
behavior. For example, Fig. 3.1 shows a water-gas-NAPL system composed of the phases water
(subscript w), gas (g), and NAPL (n). These phases are composed of the components water
(superscript w), the pseudo-component air (a), and an organic contaminant (c).

The composition of the components in a phase can influence the phase properties. Furthermore,
for mass transfer, the phase behavior is quite different from the component behavior.

Equilibrium: For the non-isothermal, multi-phase, multi-component processes in porous media we
state the assumption of local thermodynamic equilibrium. Chemical equilibrium means that the
mass/mole fractions of a component in different phases are in equilibrium. Thermal equilibrium
assumes the same temperature for all considered phases. Mechanical equilibrium is not valid in
a porous medium, since discontinuities in pressure can occur across a fluid-fluid interface due to
capillary effects.

Notation: The subscript index α, e.g. w, n and g in the example of Fig. 3.1, refers to the phase, while
the superscript κ, e.g. w, a and c in the example of Fig. 3.1, refers to the component.

16

3 Advanced DuMux – Detailed Instructions

pα phase pressure ϕ porosity
T temperature K absolute permeability tensor
Sα phase saturation τ tortuosity
xκα mole fraction of component κ in phase α g gravitational acceleration
Xκ

α mass fraction of component κ in phase α qκα volume source term of κ in α
ϱmol,α molar density of phase α uα specific internal energy
ϱα mass density of phase α hα specific enthalpy
M molar mass of a phase or component cs specific heat enthalpy
krα relative permeability λpm heat conductivity
µα phase viscosity qh heat source term
Dκ

α diffusivity of component κ in phase α va,α advective velocity
vα velocity (Darcy or free flow)

Table 3.1: Notation list for most of the variables and indices used in DuMux.

solid phase (porous matrix)

water phase (w) gas phase (g)

NAPL phase (n)

adsorption

desorption

condensation, dissolution

evaporation, degassing

di
ss
ol
ut
io
n

evaporation

condensation

gas

NAPL

thermal energy (h)

Mass components

Air

Water

Organic contaminant (NAPL)

Solid phase

Figure 3.1: Mass and energy transfer between the phases in a water-NAPL-gas system [9]

17

3 Advanced DuMux – Detailed Instructions

3.1.2 Scale1

Depending on the scale of interest, physical and chemical processes and properties can be described us-
ing different approaches. On the molecular scale, the properties and interactions of individual molecules
are described, which is only feasible for a restricted number of molecules. For larger systems, a con-
tinuum approach is used, where properties are averaged over groups of similar molecules, assuming
continuous matter. This upscaling by averaging from the molecular scale results in the micro-scale,
on which the system is described by the pore geometry and the distribution of distinct fluid phases
within the pores. However, for larger laboratory or field-scale applications, the micro-scale is still
computationally prohibitively expensive and system descriptions on the macro-scale are used for cal-
culations. The macro-scale description is obtained by averaging over the micro-scale properties within
a representative elementary volume (REV), which needs to be large enough to ensure that the averaged
properties are independent of the REV size or position. However, it should in turn be much smaller
than the entire domain size [12]. The detailed pore-geometry and phase-distribution information of
the micro-scale is lost on the macro-scale and replaced by volume average quantities, such as porosity,
permeability and phase saturation, and relations like the Darcy’s law. The macro-scale is also called
the REV (or Darcy) scale and is the scale of the models available in DuMux.

3.1.3 Porous medium properties1

Porosity

The porosity ϕ is defined as the fraction of the volume occupied by fluids in an REV Vfluid divided by
the total volume of the REV Vtotal.

ϕ =
Vfluid

Vtotal
= 1− Vsolid

Vtotal
. (3.1)

Intrinsic permeability

The intrinsic permeability is a measure on the REV scale of the ease of fluid flow through porous
media. It relates the potential gradient and the resulting flow velocity in the Darcy equation. As
the porous medium may have a structure leading to preferential flow in certain directions, intrinsic
permeability is in general a tensorial quantity K. For isotropic porous media, it can be reduced to a
scalar quantity K.

1This subsection is taken from [13] in a slightly adapted form.

18

3 Advanced DuMux – Detailed Instructions

3.1.4 Mass fraction, mole fraction1

The composition of a phase is described by mass or mole fractions of the components. The mole
fraction xκα of component κ in phase α is defined as:

xκα =
nκ
α∑
i n

i
α

, (3.2)

where nκ
α is the number of moles of component κ in phase α. The mass fraction Xκ

α is defined
similarly using the mass of component κ in phase α instead of nκ

α, X
κ
α = massκα/masstotalα . The molar

mass Mκ of the component κ relates the mass fraction to the mole fraction and vice versa.

3.1.5 Fluid properties1

The most important fluid properties to describe fluid flow on the REV scale are density and viscosity.

Density

The density ρα of a fluid phase α is defined as the ratio of its mass to its volume (ρα = massα/volumeα)
while the molar density ρmol,α is defined as the ratio of the number of moles per volume (ρmol,α =
molesα/volumeα).

Viscosity

The dynamic viscosity µα characterizes the resistance of a fluid to flow. As density, it is a fluid phase
property. For Newtonian fluids, it relates the shear stress τs to the velocity gradient dvα, x/dy:

τs = µα
dvα, x
dy

. (3.3)

Density and viscosity are both dependent on pressure, temperature and phase composition.

3.1.6 Fluid phase interactions in porous media1

If more than a single fluid is present in the porous medium, the fluids interact with each other and the
solids, which leads to additional properties for multi-phase systems.

Saturation

The saturation Sα of a phase α is defined as the ratio of the volume occupied by that phase to the
total pore volume within an REV. As all pores are filled with some fluid, the sum of the saturations
of all present phases is equal to one.

Capillary pressure

Immiscible fluids form a sharp interface as a result of differences in their intermolecular forces translat-
ing into different adhesive and cohesive forces at the fluid-fluid and fluid-fluid-solid interfaces creating
interfacial tension on the microscale. From the mechanical equilibrium which has also to be satisfied

19

3 Advanced DuMux – Detailed Instructions

at the interface, a difference between the pressures of the fluid phases results defined as the capillary
pressure pc:

pc = pn − pw. (3.4)

On the microscale, pc can be calculated from the surface tension according to the Laplace equation
[see 12].

On the REV scale, however, capillary pressure needs to be defined by quantities of that scale. Several
empirical relations provide expressions to link pc to the wetting-phase saturation Sw. An example is the
relation given by Brooks and Corey [7] to determine pc based on Se, which is the effective wetting-phase
saturation, the entry pressure pd, and the parameter λ describing the pore-size distribution:

pc = pdS
− 1

λ
e , (3.5)

with

Se =
Sw − Sw,r

1− Sw,r
, (3.6)

where Sw,r is the residual wetting phase saturation which cannot be displaced by another fluid phase
and remains in the porous medium.

Relative permeability

The presence of two fluid phases in the porous medium reduces the space available for flow for each
of the fluid phases. This increases the resistance to flow of the phases, which is accounted for by the
means of the relative permeability kr,α, which scales the intrinsic permeability. It is a value between
zero and one, depending on the saturation. The relations describing the relative permeabilities of
the wetting and nonwetting phase are different as the wetting phase predominantly occupies small
pores and the edges of larger pores while the nonwetting phases occupies large pores. The relative
permeabilities for the wetting phase kr,w and the nonwetting phase are e.g. calculated as (also by
Brooks and Corey [7]):

kr,w = S
2+3λ

λ
e (3.7)

and

kr,n = (1− Se)
2

(
1− S

2+λ
λ

e

)
. (3.8)

3.1.7 Transport processes in porous media 1

On the macro-scale, the transport of mass can be grouped according to the driving force of the transport
process. Pressure gradients result in the advective transport of a fluid phase and all the components
constituting the phase, while concentration gradients result in the diffusion of a component within a
phase.

20

3 Advanced DuMux – Detailed Instructions

Advection

Advective transport is determined by the flow field. On the macro-scale, the velocity v is calculated
using the Darcy equation depending on the potential gradient (∇pα−ραg), accounting for both pressure
difference and gravitation, the intrinsic permeability of the porous medium, and the viscosity µ of the
fluid phase:

v = −K

µ
(∇p− ρg). (3.9)

v is proportional to (∇p − ρg) with the proportional factor K/µ. This equation can be extended
to calculate the velocity vα of phase α in the case of two-phase flow by considering the relative
permeability kr,α (Section 3.1.6):

vα = −kr,αK

µα
(∇pα − ραg) (3.10)

Diffusion

Molecular diffusion is a process determined by the concentration gradient. It is commonly modeled as
Fickian diffusion following Fick’s first law:

jd = −ραD
κ
α∇Xκ

α, (3.11)

where Dκ
α is the molecular diffusion coefficient of component κ in phase α. In a porous medium, the

actual path lines are tortuous due to the impact of the solid matrix. This tortuosity and the impact of
the presence of multiple fluid phases is accounted for by using an effective diffusion coefficient Dκ

pm,α:

Dκ
pm,α = ϕταSαD

κ
α, (3.12)

where τα is the tortuosity of phase α.

3.1.8 Gas mixing laws

Prediction of the p−ϱ−T behavior of gas mixtures is typically based on two (contradicting) concepts:
Dalton’s law or Amagat’s law. In the following the two concepts will be explained in more detail.

Dalton’s law

Dalton’s law assumes that the gases in the mixture are non-interacting (with each other) and each gas
independently applies its own pressure (partial pressure), the sum of which is the total pressure:

p =
∑
i

pi. (3.13)

Here pi refers to the partial pressure of component i. As an example, if two equal volumes of gas A
and gas B are mixed, the volume of the mixture stays the same but the pressures add up (see Figure
3.2). The density of the mixture, ϱ, can be calculated as follows:

21

3 Advanced DuMux – Detailed Instructions

Figure 3.2: Dalton’s law visualized

ϱ =
m

V
=

mA +mB

V
=

ϱAV + ϱBV

V
= ϱA + ϱB, (3.14)

or for an arbitrary number of gases:

ϱ =
∑
i

ϱi; ϱm =
∑
i

ϱm,i. (3.15)

Amagat’s law

Amagat’s law assumes that the volumes of the component gases are additive; the interactions of the
different gases are the same as the average interactions of the components. This is known as Amagat’s
law:

V =
∑
i

Vi. (3.16)

As an example, if two volumes of gas A and B at equal pressure are mixed, the pressure of the mixture
stays the same, but the volumes add up (see Figure 3.3). The density of the mixture, ϱ, can be

Figure 3.3: Amagat’s law visualized

calculated as follows:

ϱ =
m

V
=

m

VA + VB
=

m
mA
ϱA

+ mB
ϱB

=
m

XAm
ϱA

+ XBm
ϱB

=
1

XA
ϱA

+ XB
ϱB

, (3.17)

or for an arbitrary number of gases:

ϱ =
1∑
i
Xi
ϱi

; ϱm =
1∑
i

xi
ϱm,i

. (3.18)

22

3 Advanced DuMux – Detailed Instructions

Ideal gases

An ideal gas is defined as a gas whose molecules are spaced so far apart that the behavior of a molecule
is not influenced by the presence of other molecules. This assumption is usually valid at low pressures
and high temperatures. The ideal gas law states that, for one gas:

p = ϱ
RT

M
; p = ϱmRT. (3.19)

Using the assumption of ideal gases and either Dalton’s law or Amagat’s law lead to the density of the
mixture, ϱ, as:

ϱ =
p

RT

∑
i

Mixi; ϱm =
p

RT
. (3.20)

3.1.9 Available Models

A list of all available models can be found in the Doxygen documentation at https://dumux.org/

docs/doxygen/releases/3.7/modules.html. The documentation includes a detailed description for
every model.

3.2 Temporal Discretization and Solution Strategies

In this section, the temporal discretization as well as solution strategies (monolithic/sequential) are
presented.

3.2.1 Temporal discretization

Our systems of partial differential equations are discretized in space and in time.
Let us consider the general case of a balance equation of the following form

∂m(u)

∂t
+∇ · f(u,∇u) + q(u) = 0, (3.21)

seeking an unknown quantity u in terms of storage m, flux f and source q. All available Dumux models
can be written mathematically in form of (3.21) with possibly vector-valued quantities u, m, q and a
tensor-valued flux f . For the sake of simplicity, we assume scalar quantities u, m, q and a vector-valued
flux f in the notation below.
For discretizing (3.21), we need to choose an approximation for the temporal derivative ∂m(u)/∂t.

While many elaborate methods for this approximation exist, we focus on the simplest one of a first
order difference quotient

∂m(uk/k+1)

∂t
≈ m(uk+1)−m(uk)

∆tk+1
(3.22)

for approximating the solution u at time tk (forward) or tk+1 (backward). The question of whether
to choose the forward or the backward quotient leads to the explicit and implicit Euler method,
respectively. In case of the former, inserting (3.22) in (3.21) at time tk leads to

m(uk+1)−m(uk)

∆tk+1
+∇ · f(uk,∇uk) + q(uk) = 0, (3.23)

23

https://dumux.org/docs/doxygen/releases/3.7/modules.html
https://dumux.org/docs/doxygen/releases/3.7/modules.html

3 Advanced DuMux – Detailed Instructions

whereas the implicit Euler method is described as

m(uk+1)−m(uk)

∆tk+1
+∇ · f(uk+1,∇uk+1) + q(uk+1) = 0. (3.24)

Once the solution uk at time tk is known, it is straightforward to determine m(uk+1) from (3.23), while
attempting to do the same based on (3.24) involves the solution of a system of equations. On the other
hand, the explicit method (3.23) is stable only if the time step size ∆tk+1 is below a certain limit that
depends on the specific balance equation, whereas the implicit method (3.24) is unconditionally stable.

3.2.2 Solution strategies to solve equations

The governing equations of each model can be solved monolithically or sequentially. The basic idea
of the sequential algorithm is to reformulate the equations of multi-phase flow into one equation for
pressure and equations for phase/component/... transport. The pressure equation is the sum of the
mass balance equations and thus considers the total flow of the fluid system. The new set of equations
is considered as decoupled (or weakly coupled) and can thus be solved sequentially. The most popular
sequential model is the fractional flow formulation for two-phase flow which is usually implemented
applying an IMplicit Pressure Explicit Saturation algorithm (IMPES). In comparison to solving the
equations monolithically, the sequential structure allows the use of different discretization methods
for the different equations. The standard method used in the sequential algorithm is a cell-centered
finite volume method. Further schemes, so far only available for the two-phase pressure equation,
are cell-centered finite volumes with multi-point flux approximation (Mpfa-O method) and mimetic
finite differences. An h-adaptive implementation of both sequential algorithms is provided for two
dimensions.

3.3 Spatial Discretization

We discretize space with cell-centered finite volume methods (3.3.1), the box method (3.3.2) or a
staggered grid scheme (3.3.3). Grid adaption is available for both box and cell-centered finite volume
method. In general, the spatial parameters, especially the porosity, have to be assigned on the coarsest
level of discretization.

3.3.1 Cell Centered Finite Volume Methods – A Short Introduction

Cell-centered finite volume methods use the elements of the grid as control volumes. For each control
volume the discrete values are determined at the element/control volume center (not required to be
the barycenters).
We consider a domain Ω ⊂ Rd, d ∈ {2, 3} with boundary Γ = ∂Ω. Within this section, we consider

the following elliptic problem
∇ · (−Λ∇u) = q inΩ

(−Λ∇u) · n = vN onΓN

u = uD onΓD.

(3.25)

Here, Λ = Λ(x,u) is a symmetric and positive definite tensor of second rank (e.g. permeability,
diffusivity, etc.), u = u(x) is unknown and q = q(x,u) is a source/sink. We denote by M the mesh

24

3 Advanced DuMux – Detailed Instructions

that results from the division of the domain Ω into ne control volumes K ⊂ Ω. Each K is a polygonal
open set such that K ∩ L = ∅, ∀K ̸= L and Ω = ∪K∈MK.
For the derivation of the finite-volume formulation we integrate the first equation of (3.25) over a

control volume K and apply the Gauss divergence theorem:∫
∂K

(−Λ∇u) · ndΓ =

∫
K
q dx. (3.26)

Splitting the control volume boundary ∂K into a finite number of faces σ ⊂ ∂K (such that σ = K∩L
for some neighboring control volume L) and replacing the exact fluxes by an approximation, i.e.
FK,σ ≈

∫
σ (−ΛK∇u) · ndΓ (here ΛK is the value of Λ associated with control volume K), yield∑

σ⊂∂K

FK,σ = QK , ∀K ∈ M, (3.27)

where FK,σ is the discrete flux through face σ flowing out of cell K and QK :=
∫
K q dx is the integrated

source/sink term. Equation (3.27) is the typical cell-centered finite-volume formulation. Finite-volume
schemes differ in the way how the term (ΛK∇u) ·n is approximated (i.e. the choice of the fluxes FK,σ).
Using the symmetry of the tensor ΛK , this term can be rewritten as ∇u · ΛKn, which corresponds
to the directional derivative of u in co-normal direction ΛKn. In the following, the main ideas of the
two-point flux approximation and the multi-point flux approximation methods are briefly described.
Hereby, we restrict the discussion to the two-dimensional case.
Please also note that other types of equations, e.g. instationary parabolic problems, can be dis-

cretized by applying some time discretization scheme to the time derivatives and by using the finite-
volume scheme for the flux discretization. For simplicity the discussion is restricted to the elliptic
problem (3.25).

Tpfa Method

The linear two-point flux approximation is a simple but robust cell-centered finite-volume scheme,
which is commonly used in commercial software. This scheme can be derived by using the co-normal
decomposition, which reads

ΛKnK,σ = tK,σdK,σ + d⊥
K,σ, tK,σ =

nT
K,σΛKdK,σ

dT
K,σdK,σ

, d⊥
K,σ = ΛKnK,σ − tK,σdK,σ, (3.28)

with the tensor ΛK associated with control volume K, the distance vector dK,σ := xσ − xK and
dT
K,σd

⊥
K,σ = 0, see Figure 3.4 for the used notations. The same can be done for the conormal ΛLnL,σ.

The tK,σ and tL,σ are the transmissibilities associated with the face σ. These transmissibilities are
calculated in DuMux by using the function computeTpfaTransmissibility.
With these notations, it follows that for each cell K and face σ

∇u ·ΛKnK,σ = tK,σ∇u · dK,σ +∇u · d⊥
K,σ. (3.29)

For the Tpfa scheme, the second part in the above equation is neglected. By using the fact that
∇u · dK,σ ≈ uσ − uK , the discrete fluxes for face σ are given by

FK,σ = −|σ|tK,σ(uσ − uK), FL,σ = −|σ|tL,σ(uσ − uL). (3.30)

25

3 Advanced DuMux – Detailed Instructions

Figure 3.4: Two neighboring control volumes sharing the face σ.

Enforcing local flux conservation, i.e. FK,σ + FL,σ = 0, results in

uσ =
tK,σuK + tL,σuL

tK,σ + tL,σ
. (3.31)

With this, the fluxes (3.30) are rewritten as

FK,σ = |σ|
tK,σtL,σ

tK,σ + tL,σ
(uK − uL), FL,σ = |σ|

tK,σtL,σ
tK,σ + tL,σ

(uL − uK). (3.32)

By neglecting the orthogonal term, the consistency of the scheme is lost for general grids, where
∇u · d⊥

K,σ ̸= 0. The consistency is achieved only for so-called K-orthogonal grids for which d⊥
K,σ = 0.

For such grids we deduce that

tK,σtL,σ
tK,σ + tL,σ

=
τK,στL,σ

τK,σdL,σ + τL,σdK,σ
, (3.33)

with τK,σ := nK,σΛKnK,σ, τL,σ := nL,σΛLnL,σ, dK,σ := nK,σ · dK,σ, and dL,σ := nL,σ · dL,σ. This
reduces, for the case of scalar permeability, to a distance weighted harmonic averaging of permeabilities.

Mpfa Method

Expressions for the face fluxes FK,σ are obtained by introducing intermediate face unknowns uσ in
addition to the cell unknowns uK and enforcing the physically motivated continuity of fluxes and
continuity of the solution across the faces. For a face σ between the two polygons K and L these
conditions read:

FK,σ + FL,σ = 0

uK,σ = uL,σ = uσ.
(3.34)

26

3 Advanced DuMux – Detailed Instructions

Using these conditions, the intermediate face unknowns uσ can be eliminated and the fluxes are
expressed as a function of the cell unknowns uN and associated transmissibilities tNK,σ:

FK,σ =
∑

N∈SK,σ

tNK,σuN . (3.35)

Figure 3.5: Interaction region for the Mpfa-O method. The graphic on the right illustrates how the sub-
control volume Lv and face σv

2 are embedded in cell L. Note that the face stencils for all sub-
control volume faces in the depicted interaction region are Sσv

i
= {K,L,M}, meaning that

the fluxes over the sub-control volume faces depend on the three cell unknowns uK , uL, uM .

The main difference between the various finite-volume schemes available is the assembly of the face
fluxes, i.e. the computation of the tNK,σ and the size of SK,σ. For the Tpfa, that has been presented in
the last section, the stencil and transmissibilities are given as

SK,σ = {K,L}, tKK,σ = |σ|
tK,σtL,σ

tK,σ + tL,σ
, tLK,σ = −|σ|

tK,σtL,σ
tK,σ + tL,σ

,

with tK,σ, tL,σ as defined in equation (3.28).
In the following, a multi-point flux approximation method (Mpfa-O method), which was introduced

in Aavatsmark [1], is presented. The main difference to the Tpfa scheme is the fact that a consistent
discrete gradient is constructed, i.e. the term ∇u · d⊥

K,σ is not neglected.
For this scheme, a dual grid is created by connecting the barycenters of the cells with the barycenters

of the faces (d = 2) or the barycenters of the faces and edges (d = 3). This divides each cell into sub-
control volumes Kv. Analogously, each face is sub-divided into sub-control volume faces σv, see Figure
3.5. Note that for the Tpfa method sub-control volumes and control volumes coincide. Also, we allow
for piecewise constant Λ (denoted as ΛK for each cell K) and construct discrete gradients ∇Kv

D u (per

27

3 Advanced DuMux – Detailed Instructions

sub-control volume Kv). In the following, we restrict our discussion to the two-dimensional setup that
is shown in Figure 3.5. Here, the discrete gradients are constructed to be consistent such that the
following conditions hold:

∇Kv
D u · (xσv

1
− xK) = uσv

1
− uK , ∇Kv

D u · (xσv
3
− xK) = uσv

3
− uK . (3.36)

Thus, a discrete gradient (for sub-control volume Kv) that fulfills these conditions is given as

∇Kv
D u = D−T

Kv

[
uσv

1
− uK

uσv
3
− uK

]
, with DKv :=

[
xσv

1
− xK xσv

3
− xK

]
. (3.37)

This enables us to write the discrete flux across σv
1 from cell K as follows:

FK,σv
1
:= −|σv

1 |nT
σv
1
ΛK∇Kv

D u. (3.38)

Inserting the discrete gradient, yields

FK,σv
1
= ωK,σv

1σ
v
1
(uK − uσv

1
) + ωK,σv

1σ
v
3
(uK − uσv

3
), (3.39)

with (ωK,σv
1σ

v
1
, ωK,σv

1σ
v
3
)T = |σv

1 |D
−1
Kv

ΛKnσv
1
. These values are calculated in DuMux by using the func-

tion computeMpfaTransmissibility.

To deduce a cell-centered scheme, the introduced face unknowns uσv
i
have to be eliminated. This

is done by enforcing flux continuity for each sub-control volume face, i.e.

FK,σv
1
+ FL,σv

1
= 0, (3.40)

FK,σv
3
+ FM,σv

3
= 0, (3.41)

FL,σv
2
+ FM,σv

2
= 0. (3.42)

This results in a system of equations for the face unknowns uσ

A3×3uσ = B3×3u, (3.43)

where u contains the three cell unknowns uK , uL, uM and uσ the three face unknowns uσv
1
, uσv

2
, uσv

3
.

Inserting these face unknowns into the flux expression (3.39) yields

FK,σv
i
=

∑
N∈{K,L,M}

tNK,σv
i
uN = tK,σv

i
· u, (3.44)

for each cell K and sub-control volume face σv
i .

3.3.2 Box Method – A Short Introduction

The so called box method unites the advantages of the finite-volume (FV) and finite-element (FE)
methods.
First, the model domain Ω is discretized using a FE mesh consisting of nodes and elements, see

the primary grid in Figure 3.6. Then, a secondary FV mesh is constructed by connecting the face
barycenters and element barycenters, thus creating a control volume Bv, also called box, with node v

28

3 Advanced DuMux – Detailed Instructions

Figure 3.6: Control volume for the box method.

in the center (see Figure 3.6). When referring to faces, we mean entities of codimension 1 with respect
to the element dimension.
Control volumes Bv are partitioned into sub-control volumes (scvs) such that each sub-control

volume is the intersection of the control volume with a different primal grid element, Mv = Bv ∩M ,
see Figure 3.6. The faces of Bv are partitioned into sub-control volume faces σk analogously and |σk|
denotes the measure of sub-control volume face k. Finally, the integration points xk which lie on the
scvfs and the outer normal vectors nσk

also need to be defined, see Figure 3.6 for reference.
The advantage of the FE method is that unstructured grids can be used, while the FV method is

mass conservative. The idea is to apply the FV method (balance of fluxes across the interfaces) to
each control volume and to get the fluxes across the sub-control volume faces at the integration points
xk from the FE approach. Consequently, at each scvf the following expression results:

f(ũ(xk)) · nσk
|σk| with ũ(xk) =

∑
i

Ni(xk) · ûi, (3.45)

where Ni represents the basis function of the finite element ansatz at node i. The basis functions are
defined such that Ni(xj) = δij with δij being the Kronecker delta. In the following, the discretization
of the balance equation is going to be derived. From the Reynolds transport theorem follows the
general balance equation: ∫

Ω

∂

∂t
u dx︸ ︷︷ ︸

1

+

∫
∂Ω

(vu+w) · ndΓ︸ ︷︷ ︸
2

=

∫
Ω
q dx︸ ︷︷ ︸
3

(3.46)

29

3 Advanced DuMux – Detailed Instructions

f(u) =

∫
Ω

∂u

∂t
dx+

∫
Ω
∇ · [vu+w(u)]︸ ︷︷ ︸

F (u)

dx−
∫
Ω
q dx = 0 (3.47)

where term 1 describes the changes of entity u within a control volume over time, term 2 the advective,
diffusive and dispersive fluxes over the interfaces of the control volume and term 3 is the source and
sink term. Ω denotes the model domain and F (u) = F (v, p) = F (v(x, t), p(x, t)).

Like the FE method, the box method follows the principle of weighted residuals. In the function
f(u) the unknown u is approximated by discrete values at the nodes of the FE mesh ûi and linear
basis functions Ni yielding an approximate function f(ũ). For u ∈ {v, p, xκ}, this means:

p̃ =
∑
i

Nip̂i (3.48)

ṽ =
∑
i

Niv̂i (3.49)

x̃κ =
∑
i

Nix̂
κ
i (3.50)

∇p̃ =
∑
i

∇Nip̂i (3.51)

∇ṽ =
∑
i

∇Niv̂i (3.52)

∇x̃κ =
∑
i

∇Nix̂
κ
i . (3.53)

Due to the approximation with node values and basis functions, the differential equations are not
exactly fulfilled anymore but a residual ε is produced.

f(u) = 0 ⇒ f(ũ) = ε (3.54)

Application of the principle of weighted residuals, meaning the multiplication of the residual ε with
a weighting function Wj and claiming that this product has to vanish within the whole domain,∫

Ω
εWj dx

!
= 0 with

∑
j

Wj = 1 (3.55)

yields the following equation:∫
Ω

∂ũ

∂t
Wj dx+

∫
Ω
[∇ · F (ũ)]Wj dx−

∫
Ω
qWj dx =

∫
Ω
εWj dx

!
= 0. (3.56)

For standard Galerkin schemes, the weighting functions Wj are chosen the same as the ansatz
functions Nj . However, this does not yield a locally mass-conservative scheme. Therefore, for the Box
method, the weighting functions Wj are chosen as the piece-wise constant functions over a control
volume box Bj , i.e.

Wj(x) =

{
1 x ∈ Bj

0 x /∈ Bj .
(3.57)

Thus, the Box method is a Petrov-Galerkin scheme, where the weighting functions do not belong to
the same function space as the ansatz functions.
Inserting definition (3.57) into equation (3.56) and using the Green-Gaussian integral theorem

results in ∫
Bj

∂ũ

∂t
dx+

∫
∂Bj

F (ũ) · ndΓBj −
∫
Bj

q dx
!
= 0, (3.58)

which has to hold for every control volume Bj .

30

3 Advanced DuMux – Detailed Instructions

The first term in equation (3.58) can be written as∫
Bj

∂ũ

∂t
dx =

d

dt

∫
Bj

∑
i

ûiNi dx =
∑
i

∂ûi
∂t

∫
Bj

Ni dx. (3.59)

Here, a mass lumping technique is applied by assuming that the storage capacity is reduced to the
nodes. This means that the integrals Mi,j =

∫
Bj

Ni dx are replaced by some mass lumped terms M lump
i,j

which are defined as

M lump
i,j =

{
|Bj | j = i

0 j ̸= i,
(3.60)

where |Bj | is the volume of the FV control volume Bj associated with node j. The application of this
assumption yields

|Bj |
∂ûj
∂t

+

∫
∂Bj

F (ũ) · ndΓBj −Qj = 0, (3.61)

where Qj is an approximation (using some quadrature rule) of the integrated source/sink term
∫
Bj

q dx.

Using an implicit Euler time discretization finally leads to the discretized form which will be applied
to the mathematical flow and transport equations:

|Bj |
ûn+1
j − ûnj

∆t
+

∫
∂Bj

F (ũn+1) · n dΓBj −Qn+1
j = 0. (3.62)

Equation (3.62) has to be fulfilled for each box Bj .

3.3.3 Staggered Grid – A Short Introduction

The staggered-grid or marker-and-cell method uses a finite volume method with different control vol-
umes for different equations. There are control volumes centered around the scalar primary variables.
They correspond to the finite volume mesh. Additionally, there are control volumes located around
the x, y and (in 3D) z velocity components which are shifted in the x, y and z direction, such that the
velocity components are located on the edges of the cell-centered finite volume mesh (see Figure 3.7).
As for the cell-centered method, the fluxes are evaluated at the edges of each control volume with a
two-point flux approximation, cf. 3.3.1.
The staggered-grid method is robust, mass conservative, and free of pressure oscillations but should,

as the cell-centered TPFA method, only be applied for structured grids. Currently, all free-flow models
in DuMux use the staggered-grid discretization.

3.4 Steps of a DuMux Simulation

This chapter is supposed to give a short overview over how things are “handed around” in DuMux. It
is not a comprehenisve guide through the modeling framework of DuMux, but hopefully it will help
getting to grips with it.
In Section 3.4.1 the structure of DuMux is shown from a content point of view.

31

3 Advanced DuMux – Detailed Instructions

Figure 3.7: Discretization of the staggered-grid method. The figure shows the different control volume
arrangements, which are staggered with respect to each other. There are the control
volumes centered around the scalar primary variables in black, the control volumes located
around the x-component of the velocity in blue and the control volumes located around
the y-components of the velocity in red. The control volume boundaries are given by lines.
Additionally, there is one shaded example control volume each.
In the two-dimensional free-flow models, the continuity equation is discretized using the
black control volumes, the x-component of the momentum equation is discretized using the
blue control volumes and the y-component is discretized using the red control volumes. In
three dimensions this works analogously.

3.4.1 Structure – by Content

In Figure 3.8, the algorithmic representations of a monolithical solution scheme is illustrated down to
the element level.

3.4.2 Structure – by Implementation

A possible starting point to understand how the above mentioned algorithm is implemented within Du-
Mux, is the example main file https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/
-/blob/releases/3.7/exercises/exercise-mainfile/exercise1pamain.cc

3.5 Input and Output

This section briefly explains grid generation in DuMux, summarizes the grid formats that can be used
by DuMux and introduces the DuMux GridManager. Finally, this section informs about handling

32

https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/-/blob/releases/3.7/exercises/exercise-mainfile/exercise1pamain.cc
https://git.iws.uni-stuttgart.de/dumux-repositories/dumux-course/-/blob/releases/3.7/exercises/exercise-mainfile/exercise1pamain.cc

3 Advanced DuMux – Detailed Instructions

1.
m
ai
n

2.
tim

e
st
ep

3.
N
ew
to
n

4.
el
em
en
t

initialize
foreach time step

foreach Newton iteration
foreach element

- calculate element
residual vector and
Jacobian matrix

- assemble into global
residual vector and
Jacobian matrix

endfor
solve linear system
update solution
check for Newton convergence

endfor
- adapt time step size,
possibly redo with smaller step size

- write result
endfor
finalize

Figure 3.8: Structure of a monolithical solution scheme in DuMux.

output in DuMux.

3.5.1 Supported grid file formats

DuMux can read grids from file using the Dune Grid Format (DGF), the Gmsh mesh format (MSH),
the Eclipse grid format (GRDECL), or the Visualization ToolKit (VTK/VTU/VTP) format.

Dune Grid Format

Most of our DuMux tests use the Dune Grid Format (DGF) to read in grids. A detailed description of
the DGF format and some examples can be found in the DUNE doxygen documentation (Modules →
I/O → Dune Grid Format (DGF)). To generate larger or more complex DGF files, we recommend
to write your own scripts, e.g, in C++, Matlab or Python.
The DGF format can also be used to read in spatial parameters defined on the grid. These parameters

can be defined on nodes as well as on the elements. An example for predefined parameters on a grid
can be found in dumux/test/porousmediumflow/co2/.

Gmsh Mesh Format

Gmsh is an open-source flexible grid generator for unstructured finite-element meshes ([11], http:
//geuz.org/gmsh/). DuMux supports the default Gmsh mesh format (MSH). For the format specifics

33

http://geuz.org/gmsh/
http://geuz.org/gmsh/

3 Advanced DuMux – Detailed Instructions

and how to create grids with Gmsh, e.g., using the provided GUI, we refer to the Gmsh documentation
(http://geuz.org/gmsh/doc/texinfo/gmsh.html).
The MSH format can contain element and boundary markers defined on the grid. Thus, boundaries

can be easily marked as, e.g., inflow boundaries using Gmsh. Further, the format supports higher
order elements. They can be used to create boundary parametrization supported by, e.g., the grid
manager UGGrid. An example can be found in dumux/test/io/gridmanager.

Eclipse Grid Format

The Eclipse Grid Format (GRDECL) is commonly used for corner-point grids. Such grids consist of
hexahedra, which are described by eight points on so-called pillars. A special feature of corner-point
geometries is that points on pillars can degenerate, meaning that two neighboring points on a pillar
can coincide. Furthermore, faces are, in general, bi-linear and cells can be non-convex. This allows for
the accurate description of faults, layers, or wells, occurring in geological environments.
Furthermore, petrophysical properties can be defined (for each cell), by using eclipse-specific key-

words, e.g. PORO, PERMX, PERMY.
DuMux supports the Eclipse Grid Format by using the opm-gridmodule (see (https://opm-project.

org). An example can be found in dumux/test/porousmediumflow/2p/cornerpoint.

VTK File Format

VTK format uses ASCII or XML format. It is mostly used by DuMux for output purposes and can be
visualized by programs such as Paraview, ViIt or Tecplot. Using VTK files to input grid and parameter
data is also possible. An example can be found in dumux/test/io/gridmanager.

Other Grid Formats

Grid formats other than DGF, MSH, GRDECL, or VTK will have to be converted to the DGF, MSH,
GRDECL, or VTK format before they can be used in DuMux. If conversion is not an option, another
possibility would be to write your own GridManagers. Examples of other grid formats, which have
previously been either converted or custom-created in DuMux, are ArtMesh grids (fractured network
grids), and ICEM grids (CAD developed grids).

3.5.2 The DuMux GridManager

The Dumux::GridManager class constructs the grid from information in the input file and handles the
data. Currently, supported Dune grid interface implementations are YaspGrid, OneDGrid, dune-uggrid,
dune-alugrid, dune-foamgrid, dune-subgrid, opm-grid (cornerpoint grids) and dune-spgrid. Grids
can be constructed from a DGF, VTK or MSH file by simply providing the filename to the grid in the
Grid group 2 of the input file:

 [Grid]

 File = mydgfgrid.dgf

2Note, that group name Grid is the default group name and can be customized in your problem changing the string
property GridParameterGroup. This way, it is possible, e.g., for problems with more than one grid, to set different
group names for each grid, thus configuring them separately.

34

http://geuz.org/gmsh/doc/texinfo/gmsh.html
https://opm-project.org
https://opm-project.org

3 Advanced DuMux – Detailed Instructions

If you are using an unstructured grid interface like UGGrid or FOAMGrid, constructing a grid from a
VTK or MSH is just changing a line:

 [Grid]

 File = mygmshgrid.msh

DuMux will tell you in case your selected grid manager does not support reading such files.
You want to initially refine your grid? It’s just adding a line:

 [Grid]

 File = mydgfgrid.dgf

 Refinement = 4

When reading a MSH or VTK file, further parameters are recognized. Verbose enables verbose out-
put on grid construction when set to 1. BoundarySegments enables reading parameterized boundaries.
PhysicalEntities enables reading boundary and element flags.

Parameters specific to the grid implementation

The Dumux::GridManager supports also a selection of parameters that are specific to the chosen grid
manager. To give an example, we take a look at the unstructured grid UGGrid. UGGrid supports
red-green refinement per default. One can turn off the green closure by setting the grid’s closure type

 [Grid]

 File = mydgfgrid.dgf

 ClosureType = None # or Green

For all available parameters see the Doxygen documentation.

Structured grids

If you want to construct a structured grid without using a specific grid file, insert the following into
the input file:

 [Grid]

 LowerLeft = 00 0

 UpperRight = 111

 Cells = 1010 20

where LowerLeft is a vector to the lower left corner of the grid and UpperRight a vector to the upper
right corner. Cells is a vector with the number of cells in each coordinate direction. Note, that for a
grid in a two-dimensional world, the vectors only have two entries.
Depending on the grid manager, further parameters are recognized. UGGrid, for example, supports

simplex elements as well as hexahedral elements (called “cube” in DUNE). When creating a structured
grid, we can select the cell type as follows

 [Grid]

 LowerLeft = 00 0

 UpperRight = 111

 Cells = 1010 20

 CellType = Cube # or Simplex

For all available parameters see the Doxygen documentation.

35

3 Advanced DuMux – Detailed Instructions

Other DuMux GridManagers

� CakeGridManager: Provides a method to create a piece of cake grid.

� CpGridManager: Reads the GRDECL file and generates a corner-point grid.

� SubgridGridManager: Creates a dune-subgrid for some given host grid.

3.5.3 Input and Output formats

VTK file format

Dumux allows to write out simulation results via the VtkOutputModule. For every print-out step,
a single VTU file is created. For parallel simulations one file per print-out step is generated for
each processor. The PVD file groups the single VTU files and contains additionally the time step
information. The VTK file format is supported by common visualisation programs like ParaView,
VisIt, and Tecplot.

Customize the VTK output

Using the respective initOutputModule function of the model IOFields, a default set of variables is
defined for the output into the VTK files. It is also possible to add further variables, using the member
function addField of the VtkOutputModule. For example, to add a variable called temperatureExact:

 vtkWriter.addField(problem->getExactTemperature(), "temperatureExact");

The first input argument of this method is the value of the additional variable, provided by a method
of the corresponding problem. If it does not already exists, the user has to provide this method.

 //! get the analytical temperature

 const std::vector<Scalar>& getExactTemperature()

 {

 return temperatureExact_;

 }

It is important that the life-time of the added field exceeds the life-time of the writer. That means
you can’t pass temporaries to the addField function. The vector has to be stored somewhere, e.g. in
the program main file.
The second input argument is the name of the additional variable (as it should be written in the

VTK files). The example above is taken from:
test/porousmediumflow/1pnc/implicit/1p2c/nonisothermal/convection/main.cc

VTK as input format

There is support for reading data and grids from VTK files, see subsection 3.5.1.

Gnuplot interface

DuMux provides a small interface to GNUPlot, which can be used to plot results and generate image
files (e.g., png). To use the gnuplot, gnuplot has to be installed. For more information see 2.6.2.

36

3 Advanced DuMux – Detailed Instructions

Container I/O

DuMux supports writing to file from and reading to some standard C++ containers like std::vector<double>
or std::vector<Dune::FieldVector>. If you want to read and write simple vectors, have a look at
the header dumux/io/container.hh.

Matrix and Vector I/O

dune-istl supports writing and reading vectors and matrices to/from different format. For example
you can write a matrix in a sparse matrix format that can be read by Matlab (see dune/istl/io.hh).

37

Bibliography

[1] Ivar Aavatsmark. An introduction to multipoint flux approximations for quadrilateral grids.
Computational Geosciences, 6:405–432, 2002.

[2] M. Acosta, C. Merten, G. Eigenberger, H. Class, R. Helmig, B. Thoben, and H. Müller-Steinhagen.
Modeling non-isothermal two-phase multicomponent flow in the cathode of PEM fuel cells. Journal
of Power Sources, page in print, 2006. URL https://dx.doi.org/10.1016/j.jpowsour.2005.

12.068.

[3] Martin Alkämper, Andreas Dedner, Robert Klöfkorn, and Martin Nolte. The DUNE-ALUGrid
Module. Archive of Numerical Software, 4(1):1–28, 2016. ISSN 2197-8263. doi: 10.11588/ans.
2016.1.23252. URL http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/

23252.

[4] ALUGrid Homepage. URL https://www.dune-project.org/modules/dune-alugrid/.

[5] P. Bastian, M. Blatt, A. Dedner, C. Engwer, R. Klöfkorn, R. Kornhuber, M. Ohlberger,
and O. Sander. A Generic Grid Interface For Parallel and Adaptive Scientific Comput-
ing. Part II: implementation and tests in DUNE. Computing, 82(2):121–138, 2008. doi:
10.1007/s00607-008-0004-9. URL https://dx.doi.org/10.1007/s00607-008-0004-9.

[6] A. Bielinski. Numerical Simulation of CO2 Sequestration in Geological Formations. PhD the-
sis, Institut für Wasserbau, Universität Stuttgart, 2006. URL http://dx.doi.org/10.18419/

opus-252.

[7] R Brooks and T Corey. Hydrau uc properties of porous media. Hydrology Papers, Colorado State
University, 24:37, 1964.

[8] A. Burri, A. Dedner, R. Klöfkorn, and M. Ohlberger. An efficient implementation of an adaptive
and parallel grid in DUNE. In Computational Science and High Performance Computing II,
volume 91, pages 67–82. Springer, 2006.

[9] H. Class, R. Helmig, and P. Bastian. Numerical Simulation of Nonisothermal Multiphase
Multicomponent Processes in Porous Media – 1. An Efficient Solution Technique. Advances
in Water Resources, 25:533–550, 2002. doi: 10.1016/S0309-1708(02)00014-3. URL http:

//dx.doi.org/10.1016/S0309-1708(02)00014-3.

[10] DUNE Homepage. URL http://www.dune-project.org.

[11] C. Geuzaine and J. F. Remacle. Gmsh: A 3-D finite element mesh generator with built-in pre-and
post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):
1309–1331, 2009. doi: 10.1002/nme.2579. URL http://dx.doi.org/10.1002/nme.2579.

38

https://dx.doi.org/10.1016/j.jpowsour.2005.12.068
https://dx.doi.org/10.1016/j.jpowsour.2005.12.068
http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/23252
http://journals.ub.uni-heidelberg.de/index.php/ans/article/view/23252
https://www.dune-project.org/modules/dune-alugrid/
https://dx.doi.org/10.1007/s00607-008-0004-9
http://dx.doi.org/10.18419/opus-252
http://dx.doi.org/10.18419/opus-252
http://dx.doi.org/10.1016/S0309-1708(02)00014-3
http://dx.doi.org/10.1016/S0309-1708(02)00014-3
http://www.dune-project.org
http://dx.doi.org/10.1002/nme.2579

Bibliography

[12] Rainer Helmig et al. Multiphase flow and transport processes in the subsurface: a contribution to
the modeling of hydrosystems. Springer-Verlag, 1997.

[13] Johannes Hommel. Modeling biogeochemical and mass transport processes in the subsurface: In-
vestigation of microbially induced calcite precipitation. Promotionsschrift, Universität Stuttgart,
TASK, 2 2016. URL https://elib.uni-stuttgart.de/handle/11682/8787.

[14] UG Homepage. URL https://www.dune-project.org/modules/dune-uggrid/.

39

https://elib.uni-stuttgart.de/handle/11682/8787
https://www.dune-project.org/modules/dune-uggrid/

	Introduction
	Overview and Infrastructure
	Directory Structure
	Setup of new Folders and new Tests
	Parameters in DuMuX
	Parameter Values

	Restart DuMuX Simulations
	Developing DuMuX
	Communicate with DuMuX Developers
	Coding Guidelines
	Tips and Tricks

	External Tools
	Git
	Gnuplot
	Gstat
	ParaView

	Scripts
	Repository development Scripts:
	Post-processing Scripts:
	Testing Scripts:
	Miscellaneous:

	Assembling the linear system
	Newton's method
	Structure of matrix and vectors

	Advanced DuMuX – Detailed Instructions
	Physical Basics
	Basic Definitions and Assumptions
	Scale
	Porous medium properties
	Porosity
	Intrinsic permeability

	Mass fraction, mole fraction
	Fluid properties
	Density
	Viscosity

	Fluid phase interactions in porous media
	Saturation
	Capillary pressure
	Relative permeability

	Transport processes in porous media
	Advection
	Diffusion

	Gas mixing laws
	Dalton's law
	Amagat's law
	Ideal gases

	Available Models

	Temporal Discretization and Solution Strategies
	Temporal discretization
	Solution strategies to solve equations

	Spatial Discretization
	Cell Centered Finite Volume Methods – A Short Introduction
	Tpfa Method
	Mpfa Method

	Box Method – A Short Introduction
	Staggered Grid – A Short Introduction

	Steps of a DuMuX Simulation
	Structure – by Content
	Structure – by Implementation

	Input and Output
	Supported grid file formats
	Dune Grid Format
	Gmsh Mesh Format
	Eclipse Grid Format
	VTK File Format
	Other Grid Formats

	The DuMuX GridManager
	Parameters specific to the grid implementation
	Structured grids
	Other DuMuX GridManagers

	Input and Output formats
	VTK file format
	Customize the VTK output
	VTK as input format
	Gnuplot interface
	Container I/O
	Matrix and Vector I/O

