26#ifndef DUMUX_2P_INCOMPRESSIBLE_TEST_LOCAL_RESIDUAL_HH
27#define DUMUX_2P_INCOMPRESSIBLE_TEST_LOCAL_RESIDUAL_HH
48template<
class TypeTag>
61 using FVElementGeometry =
typename GridGeometry::LocalView;
62 using SubControlVolume =
typename GridGeometry::SubControlVolume;
63 using SubControlVolumeFace =
typename GridGeometry::SubControlVolumeFace;
66 using Element =
typename GridView::template Codim<0>::Entity;
70 static constexpr int numPhases = ModelTraits::numFluidPhases();
71 static constexpr int pressureIdx = ModelTraits::Indices::pressureIdx;
72 static constexpr int saturationIdx = ModelTraits::Indices::saturationIdx;
73 static constexpr int conti0EqIdx = ModelTraits::Indices::conti0EqIdx;
76 using ParentType::ParentType;
91 template<
class PartialDerivativeMatrix>
93 const Problem& problem,
94 const Element& element,
95 const FVElementGeometry& fvGeometry,
96 const VolumeVariables& curVolVars,
97 const SubControlVolume& scv)
const
99 static_assert(!FluidSystem::isCompressible(0),
100 "2p/incompressiblelocalresidual.hh: Only incompressible fluids are allowed!");
101 static_assert(!FluidSystem::isCompressible(1),
102 "2p/incompressiblelocalresidual.hh: Only incompressible fluids are allowed!");
103 static_assert(ModelTraits::numFluidPhases() == 2,
104 "2p/incompressiblelocalresidual.hh: Only two-phase models are allowed!");
106 "2p/incompressiblelocalresidual.hh: Analytic differentiation has to be checked for p1-s0 formulation!");
108 const auto poreVolume =
Extrusion::volume(fvGeometry, scv)*curVolVars.porosity();
109 const auto dt = this->timeLoop().timeStepSize();
112 partialDerivatives[conti0EqIdx+0][saturationIdx] -= poreVolume*curVolVars.density(0)/dt;
113 partialDerivatives[conti0EqIdx+1][saturationIdx] += poreVolume*curVolVars.density(1)/dt;
126 template<
class PartialDerivativeMatrix>
128 const Problem& problem,
129 const Element& element,
130 const FVElementGeometry& fvGeometry,
131 const VolumeVariables& curVolVars,
132 const SubControlVolume& scv)
const
149 template<
class PartialDerivativeMatrices,
class T = TypeTag>
152 const Problem& problem,
153 const Element& element,
154 const FVElementGeometry& fvGeometry,
155 const ElementVolumeVariables& curElemVolVars,
156 const ElementFluxVariablesCache& elemFluxVarsCache,
157 const SubControlVolumeFace& scvf)
const
159 static_assert(!FluidSystem::isCompressible(0),
160 "2p/incompressiblelocalresidual.hh: Only incompressible fluids are allowed!");
161 static_assert(!FluidSystem::isCompressible(1),
162 "2p/incompressiblelocalresidual.hh: Only incompressible fluids are allowed!");
163 static_assert(FluidSystem::viscosityIsConstant(0),
164 "2p/incompressiblelocalresidual.hh: Only fluids with constant viscosities are allowed!");
165 static_assert(FluidSystem::viscosityIsConstant(1),
166 "2p/incompressiblelocalresidual.hh: Only fluids with constant viscosities are allowed!");
167 static_assert(ModelTraits::numFluidPhases() == 2,
168 "2p/incompressiblelocalresidual.hh: Only two-phase models are allowed!");
170 "2p/incompressiblelocalresidual.hh: Analytic differentiation has to be checked for p1-s0 formulation!");
175 static const Scalar upwindWeight = getParamFromGroup<Scalar>(problem.paramGroup(),
"Flux.UpwindWeight");
176 const auto flux_w = AdvectionType::flux(problem, element, fvGeometry, curElemVolVars, scvf, 0, elemFluxVarsCache);
177 const auto flux_n = AdvectionType::flux(problem, element, fvGeometry, curElemVolVars, scvf, 1, elemFluxVarsCache);
178 const auto insideWeight_w = std::signbit(flux_w) ? (1.0 - upwindWeight) : upwindWeight;
179 const auto outsideWeight_w = 1.0 - insideWeight_w;
180 const auto insideWeight_n = std::signbit(flux_n) ? (1.0 - upwindWeight) : upwindWeight;
181 const auto outsideWeight_n = 1.0 - insideWeight_n;
184 const auto insideScvIdx = scvf.insideScvIdx();
185 const auto outsideScvIdx = scvf.outsideScvIdx();
186 const auto outsideElement = fvGeometry.gridGeometry().element(outsideScvIdx);
187 const auto& insideScv = fvGeometry.scv(insideScvIdx);
188 const auto& outsideScv = fvGeometry.scv(outsideScvIdx);
189 const auto& insideVolVars = curElemVolVars[insideScvIdx];
190 const auto& outsideVolVars = curElemVolVars[outsideScvIdx];
192 const auto insidefluidMatrixInteraction = problem.spatialParams().fluidMatrixInteraction(
193 element, insideScv, elementSolution<FVElementGeometry>(insideVolVars.priVars())
195 const auto outsidefluidMatrixInteraction = problem.spatialParams().fluidMatrixInteraction(
196 outsideElement, outsideScv, elementSolution<FVElementGeometry>(outsideVolVars.priVars())
200 auto& dI_dI = derivativeMatrices[insideScvIdx];
201 auto& dI_dJ = derivativeMatrices[outsideScvIdx];
204 static const auto rho_w = insideVolVars.density(0);
205 static const auto rho_n = insideVolVars.density(1);
206 static const auto rhow_muw = rho_w/insideVolVars.viscosity(0);
207 static const auto rhon_mun = rho_n/insideVolVars.viscosity(1);
208 const auto rhowKrw_muw_inside = rho_w*insideVolVars.mobility(0);
209 const auto rhonKrn_mun_inside = rho_n*insideVolVars.mobility(1);
210 const auto rhowKrw_muw_outside = rho_w*outsideVolVars.mobility(0);
211 const auto rhonKrn_mun_outside = rho_n*outsideVolVars.mobility(1);
214 const auto insideSw = insideVolVars.saturation(0);
215 const auto outsideSw = outsideVolVars.saturation(0);
216 const auto dKrw_dSn_inside = -1.0*insidefluidMatrixInteraction.dkrw_dsw(insideSw);
217 const auto dKrw_dSn_outside = -1.0*outsidefluidMatrixInteraction.dkrw_dsw(outsideSw);
218 const auto dKrn_dSn_inside = -1.0*insidefluidMatrixInteraction.dkrn_dsw(insideSw);
219 const auto dKrn_dSn_outside = -1.0*outsidefluidMatrixInteraction.dkrn_dsw(outsideSw);
220 const auto dpc_dSn_inside = -1.0*insidefluidMatrixInteraction.dpc_dsw(insideSw);
221 const auto dpc_dSn_outside = -1.0*outsidefluidMatrixInteraction.dpc_dsw(outsideSw);
223 const auto tij = elemFluxVarsCache[scvf].advectionTij();
226 const auto up_w = rhowKrw_muw_inside*insideWeight_w + rhowKrw_muw_outside*outsideWeight_w;
227 const auto up_n = rhonKrn_mun_inside*insideWeight_n + rhonKrn_mun_outside*outsideWeight_n;
228 const auto rho_mu_flux_w = rhow_muw*flux_w;
229 const auto rho_mu_flux_n = rhon_mun*flux_n;
230 const auto tij_up_w = tij*up_w;
231 const auto tij_up_n = tij*up_n;
234 dI_dI[conti0EqIdx+0][pressureIdx] += tij_up_w;
235 dI_dJ[conti0EqIdx+0][pressureIdx] -= tij_up_w;
238 dI_dI[conti0EqIdx+0][saturationIdx] += rho_mu_flux_w*dKrw_dSn_inside*insideWeight_w;
239 dI_dJ[conti0EqIdx+0][saturationIdx] += rho_mu_flux_w*dKrw_dSn_outside*outsideWeight_w;
242 dI_dI[conti0EqIdx+1][pressureIdx] += tij_up_n;
243 dI_dJ[conti0EqIdx+1][pressureIdx] -= tij_up_n;
246 dI_dI[conti0EqIdx+1][saturationIdx] += rho_mu_flux_n*dKrn_dSn_inside*insideWeight_n;
247 dI_dJ[conti0EqIdx+1][saturationIdx] += rho_mu_flux_n*dKrn_dSn_outside*outsideWeight_n;
250 dI_dI[conti0EqIdx+1][saturationIdx] += tij_up_n*dpc_dSn_inside;
251 dI_dJ[conti0EqIdx+1][saturationIdx] -= tij_up_n*dpc_dSn_outside;
268 template<
class JacobianMatrix,
class T = TypeTag>
271 const Problem& problem,
272 const Element& element,
273 const FVElementGeometry& fvGeometry,
274 const ElementVolumeVariables& curElemVolVars,
275 const ElementFluxVariablesCache& elemFluxVarsCache,
276 const SubControlVolumeFace& scvf)
const
278 static_assert(!FluidSystem::isCompressible(0),
279 "2p/incompressiblelocalresidual.hh: Only incompressible fluids are allowed!");
280 static_assert(!FluidSystem::isCompressible(1),
281 "2p/incompressiblelocalresidual.hh: Only incompressible fluids are allowed!");
282 static_assert(FluidSystem::viscosityIsConstant(0),
283 "2p/incompressiblelocalresidual.hh: Only fluids with constant viscosities are allowed!");
284 static_assert(FluidSystem::viscosityIsConstant(1),
285 "2p/incompressiblelocalresidual.hh: Only fluids with constant viscosities are allowed!");
286 static_assert(ModelTraits::numFluidPhases() == 2,
287 "2p/incompressiblelocalresidual.hh: Only two-phase models are allowed!");
289 "2p/incompressiblelocalresidual.hh: Analytic differentiation has to be checked for p0-s1 formulation!");
294 static const Scalar upwindWeight = getParamFromGroup<Scalar>(problem.paramGroup(),
"Flux.UpwindWeight");
295 const auto flux_w = AdvectionType::flux(problem, element, fvGeometry, curElemVolVars, scvf, 0, elemFluxVarsCache);
296 const auto flux_n = AdvectionType::flux(problem, element, fvGeometry, curElemVolVars, scvf, 1, elemFluxVarsCache);
297 const auto insideWeight_w = std::signbit(flux_w) ? (1.0 - upwindWeight) : upwindWeight;
298 const auto outsideWeight_w = 1.0 - insideWeight_w;
299 const auto insideWeight_n = std::signbit(flux_n) ? (1.0 - upwindWeight) : upwindWeight;
300 const auto outsideWeight_n = 1.0 - insideWeight_n;
303 const auto insideScvIdx = scvf.insideScvIdx();
304 const auto outsideScvIdx = scvf.outsideScvIdx();
305 const auto& insideScv = fvGeometry.scv(insideScvIdx);
306 const auto& outsideScv = fvGeometry.scv(outsideScvIdx);
307 const auto& insideVolVars = curElemVolVars[insideScv];
308 const auto& outsideVolVars = curElemVolVars[outsideScv];
310 const auto elemSol =
elementSolution(element, curElemVolVars, fvGeometry);
312 const auto insidefluidMatrixInteraction
313 = problem.spatialParams().fluidMatrixInteraction(element, insideScv, elemSol);
314 const auto outsidefluidMatrixInteraction
315 = problem.spatialParams().fluidMatrixInteraction(element, outsideScv, elemSol);
318 static const auto rho_w = insideVolVars.density(0);
319 static const auto rho_n = insideVolVars.density(1);
320 static const auto rhow_muw = rho_w/insideVolVars.viscosity(0);
321 static const auto rhon_mun = rho_n/insideVolVars.viscosity(1);
322 const auto rhowKrw_muw_inside = rho_w*insideVolVars.mobility(0);
323 const auto rhonKrn_mun_inside = rho_n*insideVolVars.mobility(1);
324 const auto rhowKrw_muw_outside = rho_w*outsideVolVars.mobility(0);
325 const auto rhonKrn_mun_outside = rho_n*outsideVolVars.mobility(1);
328 const auto ti = AdvectionType::calculateTransmissibilities(problem,
333 elemFluxVarsCache[scvf]);
336 auto& dI_dJ_inside = A[insideScv.dofIndex()];
337 auto& dI_dJ_outside = A[outsideScv.dofIndex()];
340 const auto up_w = rhowKrw_muw_inside*insideWeight_w + rhowKrw_muw_outside*outsideWeight_w;
341 const auto up_n = rhonKrn_mun_inside*insideWeight_n + rhonKrn_mun_outside*outsideWeight_n;
342 const auto rho_mu_flux_w = rhow_muw*flux_w;
343 const auto rho_mu_flux_n = rhon_mun*flux_n;
346 for (
const auto& scvJ : scvs(fvGeometry))
348 const auto globalJ = scvJ.dofIndex();
349 const auto localJ = scvJ.indexInElement();
352 const auto tj = ti[localJ];
355 const auto tj_up_w = tj*up_w;
356 dI_dJ_inside[globalJ][conti0EqIdx+0][pressureIdx] += tj_up_w;
357 dI_dJ_outside[globalJ][conti0EqIdx+0][pressureIdx] -= tj_up_w;
360 const auto tj_up_n = tj*up_n;
361 dI_dJ_inside[globalJ][conti0EqIdx+1][pressureIdx] += tj_up_n;
362 dI_dJ_outside[globalJ][conti0EqIdx+1][pressureIdx] -= tj_up_n;
366 if (localJ == insideScvIdx)
369 const auto insideSw = insideVolVars.saturation(0);
370 const auto dKrw_dSn_inside = -1.0*insidefluidMatrixInteraction.dkrw_dsw(insideSw);
371 const auto dFluxW_dSnJ = rho_mu_flux_w*dKrw_dSn_inside*insideWeight_w;
372 dI_dJ_inside[globalJ][conti0EqIdx+0][saturationIdx] += dFluxW_dSnJ;
373 dI_dJ_outside[globalJ][conti0EqIdx+0][saturationIdx] -= dFluxW_dSnJ;
376 const auto dKrn_dSn_inside = -1.0*insidefluidMatrixInteraction.dkrn_dsw(insideSw);
377 const auto dFluxN_dSnJ_krn = rho_mu_flux_n*dKrn_dSn_inside*insideWeight_n;
378 dI_dJ_inside[globalJ][conti0EqIdx+1][saturationIdx] += dFluxN_dSnJ_krn;
379 dI_dJ_outside[globalJ][conti0EqIdx+1][saturationIdx] -= dFluxN_dSnJ_krn;
382 const auto dFluxN_dSnJ_pc = -1.0*tj_up_n*insidefluidMatrixInteraction.dpc_dsw(insideSw);
383 dI_dJ_inside[globalJ][conti0EqIdx+1][saturationIdx] += dFluxN_dSnJ_pc;
384 dI_dJ_outside[globalJ][conti0EqIdx+1][saturationIdx] -= dFluxN_dSnJ_pc;
386 else if (localJ == outsideScvIdx)
389 const auto outsideSw = outsideVolVars.saturation(0);
390 const auto dKrw_dSn_outside = -1.0*outsidefluidMatrixInteraction.dkrw_dsw(outsideSw);
391 const auto dFluxW_dSnJ = rho_mu_flux_w*dKrw_dSn_outside*outsideWeight_w;
392 dI_dJ_inside[globalJ][conti0EqIdx+0][saturationIdx] += dFluxW_dSnJ;
393 dI_dJ_outside[globalJ][conti0EqIdx+0][saturationIdx] -= dFluxW_dSnJ;
395 const auto dKrn_dSn_outside = -1.0*outsidefluidMatrixInteraction.dkrn_dsw(outsideSw);
396 const auto dFluxN_dSnJ_krn = rho_mu_flux_n*dKrn_dSn_outside*outsideWeight_n;
397 dI_dJ_inside[globalJ][conti0EqIdx+1][saturationIdx] += dFluxN_dSnJ_krn;
398 dI_dJ_outside[globalJ][conti0EqIdx+1][saturationIdx] -= dFluxN_dSnJ_krn;
400 const auto dFluxN_dSnJ_pc = -1.0*tj_up_n*outsidefluidMatrixInteraction.dpc_dsw(outsideSw);
401 dI_dJ_inside[globalJ][conti0EqIdx+1][saturationIdx] += dFluxN_dSnJ_pc;
402 dI_dJ_outside[globalJ][conti0EqIdx+1][saturationIdx] -= dFluxN_dSnJ_pc;
406 const auto& fluidMatrixInteractionJ
407 = problem.spatialParams().fluidMatrixInteraction(element, scvJ, elemSol);
409 const auto swJ = curElemVolVars[scvJ].saturation(0);
410 const auto dFluxN_dSnJ_pc = tj_up_n*fluidMatrixInteractionJ.dpc_dsw(swJ);
411 dI_dJ_inside[globalJ][conti0EqIdx+1][saturationIdx] -= dFluxN_dSnJ_pc;
412 dI_dJ_outside[globalJ][conti0EqIdx+1][saturationIdx] += dFluxN_dSnJ_pc;
431 template<
class PartialDerivativeMatrices>
433 const Problem& problem,
434 const Element& element,
435 const FVElementGeometry& fvGeometry,
436 const ElementVolumeVariables& curElemVolVars,
437 const ElementFluxVariablesCache& elemFluxVarsCache,
438 const SubControlVolumeFace& scvf)
const
443 static const Scalar upwindWeight = getParamFromGroup<Scalar>(problem.paramGroup(),
"Flux.UpwindWeight");
444 const auto flux_w = AdvectionType::flux(problem, element, fvGeometry, curElemVolVars, scvf, 0, elemFluxVarsCache);
445 const auto flux_n = AdvectionType::flux(problem, element, fvGeometry, curElemVolVars, scvf, 1, elemFluxVarsCache);
446 const auto insideWeight_w = std::signbit(flux_w) ? (1.0 - upwindWeight) : upwindWeight;
447 const auto outsideWeight_w = 1.0 - insideWeight_w;
448 const auto insideWeight_n = std::signbit(flux_n) ? (1.0 - upwindWeight) : upwindWeight;
449 const auto outsideWeight_n = 1.0 - insideWeight_n;
452 const auto insideScvIdx = scvf.insideScvIdx();
453 const auto& insideScv = fvGeometry.scv(insideScvIdx);
454 const auto& insideVolVars = curElemVolVars[insideScvIdx];
455 const auto& outsideVolVars = curElemVolVars[scvf.outsideScvIdx()];
457 const auto insidefluidMatrixInteraction = problem.spatialParams().fluidMatrixInteraction(
458 element, insideScv, elementSolution<FVElementGeometry>(insideVolVars.priVars())
462 static const auto rho_w = insideVolVars.density(0);
463 static const auto rho_n = insideVolVars.density(1);
464 static const auto rhow_muw = rho_w/insideVolVars.viscosity(0);
465 static const auto rhon_mun = rho_n/insideVolVars.viscosity(1);
466 const auto rhowKrw_muw_inside = rho_w*insideVolVars.mobility(0);
467 const auto rhonKrn_mun_inside = rho_n*insideVolVars.mobility(1);
468 const auto rhowKrw_muw_outside = rho_w*outsideVolVars.mobility(0);
469 const auto rhonKrn_mun_outside = rho_n*outsideVolVars.mobility(1);
472 auto& dI_dI = derivativeMatrices[insideScvIdx];
475 const auto insideSw = insideVolVars.saturation(0);
476 const auto dKrw_dSn_inside = -1.0*insidefluidMatrixInteraction.dkrw_dsw(insideSw);
477 const auto dKrn_dSn_inside = -1.0*insidefluidMatrixInteraction.dkrn_dsw(insideSw);
478 const auto dpc_dSn_inside = -1.0*insidefluidMatrixInteraction.dpc_dsw(insideSw);
480 const auto tij = elemFluxVarsCache[scvf].advectionTij();
482 const auto up_w = rhowKrw_muw_inside*insideWeight_w + rhowKrw_muw_outside*outsideWeight_w;
483 dI_dI[conti0EqIdx+0][pressureIdx] += tij*up_w;
486 dI_dI[conti0EqIdx+0][saturationIdx] += rhow_muw*flux_w*dKrw_dSn_inside*insideWeight_w;
489 const auto up_n = rhonKrn_mun_inside*insideWeight_n + rhonKrn_mun_outside*outsideWeight_n;
490 dI_dI[conti0EqIdx+1][pressureIdx] += tij*up_n;
493 dI_dI[conti0EqIdx+1][saturationIdx] += rhon_mun*flux_n*dKrn_dSn_inside*insideWeight_n;
496 dI_dI[conti0EqIdx+1][saturationIdx] += tij*dpc_dSn_inside*up_n;
510 template<
class PartialDerivativeMatrices>
512 const Problem& problem,
513 const Element& element,
514 const FVElementGeometry& fvGeometry,
515 const ElementVolumeVariables& curElemVolVars,
516 const ElementFluxVariablesCache& elemFluxVarsCache,
517 const SubControlVolumeFace& scvf)
const
The infrastructure to retrieve run-time parameters from Dune::ParameterTrees.
Element solution classes and factory functions.
Helper classes to compute the integration elements.
The available discretization methods in Dumux.
Defines an enumeration for the formulations accepted by the two-phase model.
@ p0s1
first phase pressure and second phase saturation as primary variables
auto volume(const Geometry &geo, unsigned int integrationOrder=4)
The volume of a given geometry.
Definition: volume.hh:171
auto elementSolution(const Element &element, const SolutionVector &sol, const GridGeometry &gg) -> std::enable_if_t< GridGeometry::discMethod==DiscretizationMethods::box, BoxElementSolution< typename GridGeometry::LocalView, std::decay_t< decltype(std::declval< SolutionVector >()[0])> > >
Make an element solution for box schemes.
Definition: box/elementsolution.hh:118
Adaption of the non-isothermal two-phase two-component flow model to problems with CO2.
Definition: adapt.hh:29
typename Extrusion< T >::type Extrusion_t
Convenience alias for obtaining the extrusion type.
Definition: extrusion.hh:251
typename GetProp< TypeTag, Property >::type GetPropType
get the type alias defined in the property
Definition: propertysystem.hh:180
constexpr CCTpfa cctpfa
Definition: method.hh:134
constexpr Box box
Definition: method.hh:136
Element-wise calculation of the residual and its derivatives for a two-phase, incompressible test pro...
Definition: 2p/incompressiblelocalresidual.hh:50
std::enable_if_t< GetPropType< T, Properties::GridGeometry >::discMethod==DiscretizationMethods::cctpfa, void > addFluxDerivatives(PartialDerivativeMatrices &derivativeMatrices, const Problem &problem, const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &curElemVolVars, const ElementFluxVariablesCache &elemFluxVarsCache, const SubControlVolumeFace &scvf) const
Adds flux derivatives for wetting and nonwetting phase for cell-centered FVM using TPFA.
Definition: 2p/incompressiblelocalresidual.hh:151
void addStorageDerivatives(PartialDerivativeMatrix &partialDerivatives, const Problem &problem, const Element &element, const FVElementGeometry &fvGeometry, const VolumeVariables &curVolVars, const SubControlVolume &scv) const
Adds storage derivatives for wetting and nonwetting phase.
Definition: 2p/incompressiblelocalresidual.hh:92
void addRobinFluxDerivatives(PartialDerivativeMatrices &derivativeMatrices, const Problem &problem, const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &curElemVolVars, const ElementFluxVariablesCache &elemFluxVarsCache, const SubControlVolumeFace &scvf) const
Adds Robin flux derivatives for wetting and nonwetting phase.
Definition: 2p/incompressiblelocalresidual.hh:511
void addSourceDerivatives(PartialDerivativeMatrix &partialDerivatives, const Problem &problem, const Element &element, const FVElementGeometry &fvGeometry, const VolumeVariables &curVolVars, const SubControlVolume &scv) const
Adds source derivatives for wetting and nonwetting phase.
Definition: 2p/incompressiblelocalresidual.hh:127
std::enable_if_t< GetPropType< T, Properties::GridGeometry >::discMethod==DiscretizationMethods::box, void > addFluxDerivatives(JacobianMatrix &A, const Problem &problem, const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &curElemVolVars, const ElementFluxVariablesCache &elemFluxVarsCache, const SubControlVolumeFace &scvf) const
Adds flux derivatives for wetting and nonwetting phase for box method.
Definition: 2p/incompressiblelocalresidual.hh:270
void addCCDirichletFluxDerivatives(PartialDerivativeMatrices &derivativeMatrices, const Problem &problem, const Element &element, const FVElementGeometry &fvGeometry, const ElementVolumeVariables &curElemVolVars, const ElementFluxVariablesCache &elemFluxVarsCache, const SubControlVolumeFace &scvf) const
Adds cell-centered Dirichlet flux derivatives for wetting and nonwetting phase.
Definition: 2p/incompressiblelocalresidual.hh:432
Element-wise calculation of the residual for problems using the n-phase immiscible fully implicit mod...
Definition: porousmediumflow/immiscible/localresidual.hh:40
Declares all properties used in Dumux.
Element-wise calculation of the residual for problems using the n-phase immiscible fully implicit mod...