3.6-git
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
multidomain/facet/cellcentered/mpfa/couplingmanager.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*****************************************************************************
4 * See the file COPYING for full copying permissions. *
5 * *
6 * This program is free software: you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation, either version 2 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 *****************************************************************************/
24#ifndef DUMUX_CCMPFA_FACETCOUPLING_MANAGER_HH
25#define DUMUX_CCMPFA_FACETCOUPLING_MANAGER_HH
26
27#include <algorithm>
28#include <cassert>
29
35
40
41namespace Dumux {
42
54template<class MDTraits, class CouplingMapper, std::size_t bulkDomainId, std::size_t lowDimDomainId>
55class FacetCouplingManager<MDTraits, CouplingMapper, bulkDomainId, lowDimDomainId, DiscretizationMethods::CCMpfa>
56: public FacetCouplingManager<MDTraits, CouplingMapper, bulkDomainId, lowDimDomainId, DiscretizationMethods::CCTpfa>
57{
59
60 // domain id instances
61 using BulkIdType = typename MDTraits::template SubDomain<bulkDomainId>::Index;
62 using LowDimIdType = typename MDTraits::template SubDomain<lowDimDomainId>::Index;
63 static constexpr auto bulkId = BulkIdType();
64 static constexpr auto lowDimId = LowDimIdType();
65
66 // the sub-domain type tags
67 template<std::size_t id> using SubDomainTypeTag = typename MDTraits::template SubDomain<id>::TypeTag;
68
69 // further types specific to the sub-problems
70 template<std::size_t id> using Scalar = GetPropType<SubDomainTypeTag<id>, Properties::Scalar>;
71 template<std::size_t id> using Problem = GetPropType<SubDomainTypeTag<id>, Properties::Problem>;
72 template<std::size_t id> using NumEqVector = Dumux::NumEqVector<GetPropType<SubDomainTypeTag<id>, Properties::PrimaryVariables>>;
73 template<std::size_t id> using GridGeometry = GetPropType<SubDomainTypeTag<id>, Properties::GridGeometry>;
74 template<std::size_t id> using FVElementGeometry = typename GridGeometry<id>::LocalView;
75 template<std::size_t id> using SubControlVolume = typename GridGeometry<id>::SubControlVolume;
76 template<std::size_t id> using SubControlVolumeFace = typename GridGeometry<id>::SubControlVolumeFace;
77 template<std::size_t id> using GridView = typename GridGeometry<id>::GridView;
78 template<std::size_t id> using GridIndexType = typename IndexTraits< GridView<id> >::GridIndex;
79 template<std::size_t id> using Element = typename GridView<id>::template Codim<0>::Entity;
80 template<std::size_t id> using LocalResidual = GetPropType<SubDomainTypeTag<id>, Properties::LocalResidual>;
81
82 template<std::size_t id> using GridVariables = GetPropType<SubDomainTypeTag<id>, Properties::GridVariables>;
83 template<std::size_t id> using GridVolumeVariables = typename GridVariables<id>::GridVolumeVariables;
84 template<std::size_t id> using ElementVolumeVariables = typename GridVolumeVariables<id>::LocalView;
85
86 // grid ids
87 static constexpr int bulkDim = GridView<bulkDomainId>::dimension;
88 static constexpr int lowDimDim = GridView<lowDimDomainId>::dimension;
89 static constexpr auto bulkGridId = CouplingMapper::template gridId<bulkDim>();
90 static constexpr auto lowDimGridId = CouplingMapper::template gridId<lowDimDim>();
91
92 static constexpr bool lowDimUsesBox = GridGeometry<lowDimId>::discMethod == DiscretizationMethods::box;
93
94public:
95
97 using SolutionVector = typename MDTraits::SolutionVector;
98
107 void init(std::shared_ptr< Problem<bulkId> > bulkProblem,
108 std::shared_ptr< Problem<lowDimId> > lowDimProblem,
109 std::shared_ptr< CouplingMapper > couplingMapper,
110 const SolutionVector& curSol)
111 {
112 // Initialize the parent class
113 ParentType::init(bulkProblem, lowDimProblem, couplingMapper, curSol);
114
115 // determine all bulk scvfs that coincide with low dim elements
116 bulkScvfIsOnFacetElement_.assign(bulkProblem->gridGeometry().numScvf(), false);
117 const auto& bulkMap = couplingMapper->couplingMap(bulkGridId, lowDimGridId);
118 for (const auto& entry : bulkMap)
119 for (const auto& couplingEntry : entry.second.elementToScvfMap)
120 for (const auto& scvfIdx : couplingEntry.second)
121 bulkScvfIsOnFacetElement_[scvfIdx] = true;
122
123 // store pointer to mapper
124 couplingMapperPtr_ = couplingMapper;
125 }
126
130 bool isOnInteriorBoundary(const Element<bulkId>& element,
131 const SubControlVolumeFace<bulkId>& scvf) const
132 { return bulkScvfIsOnFacetElement_[scvf.index()]; }
133
134 using ParentType::evalCouplingResidual;
141 template< class LowDimLocalAssembler >
142 typename LocalResidual<lowDimId>::ElementResidualVector
144 const LowDimLocalAssembler& lowDimLocalAssembler,
145 BulkIdType,
146 GridIndexType<bulkId> dofIdxGlobalJ)
147 { return evalCouplingResidual(lowDimId, lowDimLocalAssembler, bulkId); }
148
154 template< class LowDimLocalAssembler >
155 typename LocalResidual<lowDimId>::ElementResidualVector
156 evalCouplingResidual(LowDimIdType, const LowDimLocalAssembler& lowDimLocalAssembler, BulkIdType)
157 {
158 // make sure this is called for the element for which the context was set
159 assert(this->lowDimCouplingContext().isSet);
160 assert(this->problem(lowDimId).gridGeometry().elementMapper().index(lowDimLocalAssembler.element()) == this->lowDimCouplingContext().elementIdx);
161
162 // fill element residual vector with the sources
163 typename LowDimLocalAssembler::LocalResidual::ElementResidualVector res(lowDimLocalAssembler.fvGeometry().numScv());
164 res = 0.0;
165 for (const auto& scv : scvs(lowDimLocalAssembler.fvGeometry()))
166 res[scv.localDofIndex()] -= evalSourcesFromBulk(lowDimLocalAssembler.element(),
167 lowDimLocalAssembler.fvGeometry(),
168 lowDimLocalAssembler.curElemVolVars(),
169 scv);
170 return res;
171 }
172
176 NumEqVector<lowDimId> evalSourcesFromBulk(const Element<lowDimId>& element,
177 const FVElementGeometry<lowDimId>& fvGeometry,
178 const ElementVolumeVariables<lowDimId>& elemVolVars,
179 const SubControlVolume<lowDimId>& scv)
180 {
181 // make sure the this is called for the element of the context
182 assert(this->problem(lowDimId).gridGeometry().elementMapper().index(element) == this->lowDimCouplingContext().elementIdx);
183
184 NumEqVector<lowDimId> sources(0.0);
185
186 const auto& map = couplingMapperPtr_->couplingMap(lowDimGridId, bulkGridId);
187 auto it = map.find(this->lowDimCouplingContext().elementIdx);
188 if (it == map.end())
189 return sources;
190
191 assert(this->lowDimCouplingContext().isSet);
192 for (const auto& embedment : it->second.embedments)
193 {
194 // list of scvfs in the bulk domain whose fluxes enter this scv
195 // if low dim domain uses a cc scheme, this is all scvfs lying on this element
196 // if it uses box, it is the one scvf coinciding with the given scv
197 const auto& coincidingScvfs = embedment.second;
198 const auto& scvfList = lowDimUsesBox ? std::vector<GridIndexType<lowDimId>>{ coincidingScvfs[scv.localDofIndex()] }
199 : coincidingScvfs;
200
201 sources += this->evalBulkFluxes(this->problem(bulkId).gridGeometry().element(embedment.first),
202 *this->lowDimCouplingContext().bulkFvGeometry,
203 *this->lowDimCouplingContext().bulkElemVolVars,
204 *this->lowDimCouplingContext().bulkElemFluxVarsCache,
205 *this->lowDimCouplingContext().bulkLocalResidual,
206 scvfList);
207 }
208
209 return sources;
210 }
211
216 template<class JacobianPattern>
217 void extendJacobianPattern(LowDimIdType, JacobianPattern& pattern) const
218 {
219 const auto& lowDimFVGridGeometry = this->problem(lowDimId).gridGeometry();
220 for (const auto& element : elements(lowDimFVGridGeometry.gridView()))
221 {
222
223 const auto eIdx = lowDimFVGridGeometry.elementMapper().index(element);
224 const auto& map = couplingMapperPtr_->couplingMap(lowDimGridId, bulkGridId);
225 auto it = map.find(eIdx);
226
227 // if element is coupled, take one of the neighbors and add coupling stencil to pattern
228 if (it != map.end())
229 {
230 // coupling stencil of the first neighbor
231 const auto bulkElemIdx = it->second.embedments[0].first;
232 const auto& bulkMapEntry = couplingMapperPtr_->couplingMap(bulkGridId, lowDimGridId).at(bulkElemIdx);
233 const auto& couplingStencil = bulkMapEntry.couplingStencil;
234
235 for (auto globalJ : couplingStencil)
236 {
237 if (lowDimUsesBox)
238 {
239 for (int i = 0; i < element.subEntities(lowDimDim); ++i)
240 pattern.add(lowDimFVGridGeometry.vertexMapper().subIndex(element, i, lowDimDim), globalJ);
241 }
242 else
243 pattern.add(eIdx, globalJ);
244 }
245 }
246 }
247 }
248
250 template<class JacobianPattern>
251 void extendJacobianPattern(BulkIdType, JacobianPattern& pattern) const
252 {}
253
260 template<class LowDimLocalAssembler, class JacobianMatrixDiagBlock, class GridVariables>
262 const LowDimLocalAssembler& lowDimLocalAssembler,
263 const typename LowDimLocalAssembler::LocalResidual::ElementResidualVector&,
264 JacobianMatrixDiagBlock& A,
265 GridVariables& gridVariables)
266 {
267 // Since coupling only occurs via the fluxes, there are no
268 // additional derivatives for explicit time integration schemes
269 if (!LowDimLocalAssembler::isImplicit())
270 return;
271
272 // lambda to update the coupling context for a given lowDim element/dofIdx
273 auto updateContext = [&] (auto elemIdx, auto dofIdx, auto priVars, auto pvIdx)
274 {
275 // deflect the solution
276 auto& ldSol = this->curSol(lowDimId);
277 ldSol[dofIdx][pvIdx] = priVars[pvIdx];
278
279 // update the corresponding vol vars in the bulk context
280 assert(this->bulkCouplingContext().isSet);
281 const auto& bulkMap = couplingMapperPtr_->couplingMap(bulkGridId, lowDimGridId);
282 const auto& couplingElementStencil = bulkMap.find(this->bulkCouplingContext().elementIdx)->second.couplingElementStencil;
283
284 auto it = std::find(couplingElementStencil.begin(), couplingElementStencil.end(), elemIdx);
285 assert(it != couplingElementStencil.end());
286 const auto idxInContext = std::distance(couplingElementStencil.begin(), it);
287
288 auto& volVars = this->bulkCouplingContext().lowDimVolVars[idxInContext];
289 const auto& fvGeom = this->bulkCouplingContext().lowDimFvGeometries[idxInContext];
290 const auto& element = this->problem(lowDimId).gridGeometry().element(elemIdx);
291
292 // if low dim domain uses the box scheme, we have to create interpolated vol vars
293 if (lowDimUsesBox)
294 {
295 const auto elemGeom = element.geometry();
296 FacetCoupling::makeInterpolatedVolVars(volVars, this->problem(lowDimId), ldSol, fvGeom, element, elemGeom, elemGeom.center());
297 }
298 // if low dim domain uses a cc scheme we can directly update the vol vars
299 else
300 volVars.update( elementSolution(element, ldSol, this->problem(lowDimId).gridGeometry()),
301 this->problem(lowDimId),
302 element,
303 fvGeom.scv(elemIdx) );
304
305 // update the element flux variables cache (tij depend on low dim values in context)
306 const auto contextElem = this->problem(bulkId).gridGeometry().element(this->bulkCouplingContext().elementIdx);
307 this->lowDimCouplingContext().bulkElemFluxVarsCache->update(contextElem,
308 *this->lowDimCouplingContext().bulkFvGeometry,
309 *this->lowDimCouplingContext().bulkElemVolVars);
310 };
311
312 const auto eIdx = this->problem(lowDimId).gridGeometry().elementMapper().index(lowDimLocalAssembler.element());
313
314 // bug tracking
315 assert(this->lowDimCouplingContext().isSet);
316 assert(this->lowDimCouplingContext().elementIdx == eIdx);
317
318 // if the element is coupled, evaluate additional source derivatives
319 const auto& map = couplingMapperPtr_->couplingMap(lowDimGridId, bulkGridId);
320 auto it = map.find(eIdx);
321 if (it != map.end())
322 evalLowDimSourceDerivatives_(updateContext, lowDimLocalAssembler, A);
323 }
324
326 template<class LocalAssemblerI, class JacobianMatrixDiagBlock, class GridVariables>
328 const LocalAssemblerI& localAssemblerI,
329 const typename LocalAssemblerI::LocalResidual::ElementResidualVector& origResiduals,
330 JacobianMatrixDiagBlock& A,
331 GridVariables& gridVariables)
332 {}
333
334private:
336 template<class UpdateContext, class LowDimLocalAssembler, class JacobianMatrixDiagBlock>
337 void evalLowDimSourceDerivatives_(const UpdateContext& updateContext,
338 const LowDimLocalAssembler& lowDimLocalAssembler,
339 JacobianMatrixDiagBlock& A)
340 {
341 const auto& lowDimFVGridGeometry = this->problem(lowDimId).gridGeometry();
342 const auto eIdx = lowDimFVGridGeometry.elementMapper().index(lowDimLocalAssembler.element());
343
344 // coupling stencil of the first neighbor
345 const auto bulkElemIdx = this->bulkCouplingContext().elementIdx;
346 const auto& bulkMapEntry = couplingMapperPtr_->couplingMap(bulkGridId, lowDimGridId).at(bulkElemIdx);
347 const auto& couplingStencil = bulkMapEntry.couplingStencil;
348 const auto& couplingElementStencil = bulkMapEntry.couplingElementStencil;
349
350 // compute the undeflected residual (reuse coupling residual function)
351 const auto origResidual = evalCouplingResidual(lowDimId, lowDimLocalAssembler, bulkId);
352
353 // container of dofs within this element
354 std::vector< std::decay_t<decltype(couplingStencil[0])> > elemDofs;
355 elemDofs.reserve(lowDimLocalAssembler.fvGeometry().numScv());
356 for (const auto& scv : scvs(lowDimLocalAssembler.fvGeometry()))
357 elemDofs.push_back(scv.dofIndex());
358
359 // compute derivate for all additional dofs in the stencil
360 for (const auto couplingElemIdx : couplingElementStencil)
361 {
362 // skip the same element
363 if (couplingElemIdx == eIdx)
364 continue;
365
366 // container of dofs within the other element
367 std::vector< std::decay_t<decltype(couplingStencil[0])> > elemDofsJ;
368 if (lowDimUsesBox)
369 {
370 const auto& elemJ = lowDimFVGridGeometry.element(couplingElemIdx);
371 for (int i = 0; i < elemJ.subEntities(lowDimDim); ++i)
372 elemDofsJ.push_back(lowDimFVGridGeometry.vertexMapper().subIndex(elemJ, i, lowDimDim));
373 }
374 else
375 elemDofsJ.push_back(couplingElemIdx);
376
377 for (auto dofIndex : elemDofsJ)
378 {
379 auto partialDerivs = origResidual;
380 const auto origPriVars = this->curSol(lowDimId)[dofIndex];
381
382 // calculate derivatives w.r.t to the privars at the dof at hand
383 static constexpr auto numEq = std::decay_t<decltype(origPriVars)>::dimension;
384 for (int pvIdx = 0; pvIdx < numEq; pvIdx++)
385 {
386 // reset partial derivatives
387 partialDerivs = 0.0;
388
389 auto evalResiduals = [&](Scalar<lowDimId> priVar)
390 {
391 auto priVars = origPriVars;
392 priVars[pvIdx] = priVar;
393
394 // Update context to deflected solution and reevaluate residual
395 updateContext(couplingElemIdx, dofIndex, priVars, pvIdx);
396 return this->evalCouplingResidual(lowDimId, lowDimLocalAssembler, bulkId);
397 };
398
399 static const int numDiffMethod = getParamFromGroup<int>(this->problem(lowDimId).paramGroup(), "Assembly.NumericDifferenceMethod");
400 static const NumericEpsilon< Scalar<lowDimId>, numEq > eps{this->problem(lowDimId).paramGroup()};
401 NumericDifferentiation::partialDerivative(evalResiduals, origPriVars[pvIdx], partialDerivs,
402 origResidual, eps(origPriVars[pvIdx], pvIdx), numDiffMethod);
403
404 // update the global stiffness matrix with the current partial derivatives
405 // A[i][col][eqIdx][pvIdx] is the rate of change of the residual of equation
406 // 'eqIdx' at dof 'i' depending on the primary variable 'pvIdx' at dof 'col'.
407 for (const auto& scv : scvs(lowDimLocalAssembler.fvGeometry()))
408 for (int eqIdx = 0; eqIdx < numEq; eqIdx++)
409 A[scv.dofIndex()][dofIndex][eqIdx][pvIdx] += partialDerivs[scv.indexInElement()][eqIdx];
410
411 // restore the original coupling context
412 updateContext(couplingElemIdx, dofIndex, origPriVars, pvIdx);
413 }
414 }
415 }
416 }
417
419 std::vector<bool> bulkScvfIsOnFacetElement_;
420
422 std::shared_ptr< CouplingMapper > couplingMapperPtr_;
423};
424
425} // end namespace Dumux
426
427#endif
An adapter class for local assemblers using numeric differentiation.
Element solution classes and factory functions.
The available discretization methods in Dumux.
A helper to deduce a vector with the same size as numbers of equations.
Defines the index types used for grid and local indices.
A class for numeric differentiation.
static ctype distance(const Dune::FieldVector< ctype, dimWorld > &a, const Dune::FieldVector< ctype, dimWorld > &b)
Compute the shortest distance between two points.
Definition: distance.hh:294
auto elementSolution(const Element &element, const SolutionVector &sol, const GridGeometry &gg) -> std::enable_if_t< GridGeometry::discMethod==DiscretizationMethods::box, BoxElementSolution< typename GridGeometry::LocalView, std::decay_t< decltype(std::declval< SolutionVector >()[0])> > >
Make an element solution for box schemes.
Definition: box/elementsolution.hh:118
typename NumEqVectorTraits< PrimaryVariables >::type NumEqVector
A vector with the same size as numbers of equations This is the default implementation and has to be ...
Definition: numeqvector.hh:46
void makeInterpolatedVolVars(VolumeVariables &volVars, const Problem &problem, const SolutionVector &sol, const FVGeometry &fvGeometry, const typename FVGeometry::GridGeometry::GridView::template Codim< 0 >::Entity &element, const typename FVGeometry::GridGeometry::GridView::template Codim< 0 >::Entity::Geometry &elemGeom, const typename FVGeometry::GridGeometry::GridView::template Codim< 0 >::Entity::Geometry::GlobalCoordinate &pos)
Free function that allows the creation of a volume variables object interpolated to a given position ...
Definition: multidomain/facet/couplingmanager.hh:52
Adaption of the non-isothermal two-phase two-component flow model to problems with CO2.
Definition: adapt.hh:29
typename GetProp< TypeTag, Property >::type GetPropType
get the type alias defined in the property
Definition: propertysystem.hh:180
constexpr Box box
Definition: method.hh:136
Structure to define the index types used for grid and local indices.
Definition: indextraits.hh:38
static void partialDerivative(const Function &function, Scalar x0, FunctionEvalType &derivative, const FunctionEvalType &fx0, const int numericDifferenceMethod=1)
Computes the derivative of a function with respect to a function parameter.
Definition: numericdifferentiation.hh:61
Property to specify the type of scalar values.
Definition: common/properties.hh:43
A vector of primary variables.
Definition: common/properties.hh:49
Property to specify the type of a problem which has to be solved.
Definition: common/properties.hh:55
Definition: common/properties.hh:72
Definition: common/properties.hh:100
The grid variables object managing variable data on the grid (volvars/fluxvars cache)
Definition: common/properties.hh:121
bool isOnInteriorBoundary(const Element< bulkId > &element, const SubControlVolumeFace< bulkId > &scvf) const
returns true if a bulk scvf coincides with a facet element.
Definition: multidomain/facet/cellcentered/mpfa/couplingmanager.hh:130
LocalResidual< lowDimId >::ElementResidualVector evalCouplingResidual(LowDimIdType, const LowDimLocalAssembler &lowDimLocalAssembler, BulkIdType)
Evaluates the coupling element residual of a lower-dimensional domain element with respect to a dof i...
Definition: multidomain/facet/cellcentered/mpfa/couplingmanager.hh:156
NumEqVector< lowDimId > evalSourcesFromBulk(const Element< lowDimId > &element, const FVElementGeometry< lowDimId > &fvGeometry, const ElementVolumeVariables< lowDimId > &elemVolVars, const SubControlVolume< lowDimId > &scv)
Computes the sources in a lower-dimensional sub-control volume stemming from the bulk domain.
Definition: multidomain/facet/cellcentered/mpfa/couplingmanager.hh:176
void extendJacobianPattern(LowDimIdType, JacobianPattern &pattern) const
Extend the jacobian pattern of the diagonal block of the lowdim domain by the elements that are in th...
Definition: multidomain/facet/cellcentered/mpfa/couplingmanager.hh:217
typename MDTraits::SolutionVector SolutionVector
the type of the solution vector
Definition: multidomain/facet/cellcentered/mpfa/couplingmanager.hh:97
LocalResidual< lowDimId >::ElementResidualVector evalCouplingResidual(LowDimIdType, const LowDimLocalAssembler &lowDimLocalAssembler, BulkIdType, GridIndexType< bulkId > dofIdxGlobalJ)
Evaluates the coupling element residual of a lower-dimensional domain element with respect to a dof i...
Definition: multidomain/facet/cellcentered/mpfa/couplingmanager.hh:143
void evalAdditionalDomainDerivatives(BulkIdType, const LocalAssemblerI &localAssemblerI, const typename LocalAssemblerI::LocalResidual::ElementResidualVector &origResiduals, JacobianMatrixDiagBlock &A, GridVariables &gridVariables)
The bulk domain has no additional derivatives.
Definition: multidomain/facet/cellcentered/mpfa/couplingmanager.hh:327
void init(std::shared_ptr< Problem< bulkId > > bulkProblem, std::shared_ptr< Problem< lowDimId > > lowDimProblem, std::shared_ptr< CouplingMapper > couplingMapper, const SolutionVector &curSol)
Initialize the coupling manager.
Definition: multidomain/facet/cellcentered/mpfa/couplingmanager.hh:107
void evalAdditionalDomainDerivatives(LowDimIdType, const LowDimLocalAssembler &lowDimLocalAssembler, const typename LowDimLocalAssembler::LocalResidual::ElementResidualVector &, JacobianMatrixDiagBlock &A, GridVariables &gridVariables)
evaluate additional derivatives of the element residual of the low-dim domain with respect to dofs in...
Definition: multidomain/facet/cellcentered/mpfa/couplingmanager.hh:261
void extendJacobianPattern(BulkIdType, JacobianPattern &pattern) const
The bulk domain has no extended jacobian pattern.
Definition: multidomain/facet/cellcentered/mpfa/couplingmanager.hh:251
Manages the coupling between bulk elements and lower dimensional elements where the coupling occurs a...
Definition: multidomain/facet/cellcentered/tpfa/couplingmanager.hh:54
Implementation for the coupling manager between two domains of dimension d and (d-1) for models consi...
Definition: multidomain/facet/couplingmanager.hh:95
Declares all properties used in Dumux.
The interface of the coupling manager for multi domain problems.