26#ifndef DUMUX_MULTIDOMAIN_EMBEDDED_COUPLINGMANAGERBASE_HH
27#define DUMUX_MULTIDOMAIN_EMBEDDED_COUPLINGMANAGERBASE_HH
33#include <unordered_map>
35#include <dune/common/timer.hh>
36#include <dune/geometry/quadraturerules.hh>
55template<
class MDTraits>
59 template<std::
size_t i>
using SubDomainTypeTag =
typename MDTraits::template SubDomain<i>::TypeTag;
64 template<std::
size_t i>
68 template<std::
size_t i>
80template<
class MDTraits,
class Implementation,
class PSTraits = DefaultPo
intSourceTraits<MDTraits>>
85 using Scalar =
typename MDTraits::Scalar;
86 static constexpr auto bulkIdx =
typename MDTraits::template SubDomain<0>::Index();
87 static constexpr auto lowDimIdx =
typename MDTraits::template SubDomain<1>::Index();
88 using SolutionVector =
typename MDTraits::SolutionVector;
89 using PointSourceData =
typename PSTraits::PointSourceData;
92 template<std::
size_t id>
using PointSource =
typename PSTraits::template PointSource<id>;
93 template<std::
size_t id>
using SubDomainTypeTag =
typename MDTraits::template SubDomain<id>::TypeTag;
97 template<std::
size_t id>
using GridView =
typename GridGeometry<id>::GridView;
98 template<std::
size_t id>
using ElementMapper =
typename GridGeometry<id>::ElementMapper;
99 template<std::
size_t id>
using Element =
typename GridView<id>::template Codim<0>::Entity;
100 template<std::
size_t id>
using ElementSeed =
typename GridView<id>::Grid::template Codim<0>::EntitySeed;
102 template<std::
size_t id>
using CouplingStencil = std::vector<GridIndex<id>>;
104 static constexpr int bulkDim = GridView<bulkIdx>::dimension;
105 static constexpr int lowDimDim = GridView<lowDimIdx>::dimension;
106 static constexpr int dimWorld = GridView<bulkIdx>::dimensionworld;
108 template<std::
size_t id>
109 static constexpr bool isBox()
112 using GlobalPosition =
typename Element<bulkIdx>::Geometry::GlobalCoordinate;
121 template<std::
size_t id>
using CouplingStencils = std::unordered_map<GridIndex<id>, CouplingStencil<id>>;
127 std::shared_ptr<
const GridGeometry<lowDimIdx>> lowDimGridGeometry)
129 glue_ = std::make_shared<GlueType>();
136 std::shared_ptr<
const GridGeometry<lowDimIdx>> lowDimGridGeometry)
146 void init(std::shared_ptr<Problem<bulkIdx>> bulkProblem,
147 std::shared_ptr<Problem<lowDimIdx>> lowDimProblem,
148 const SolutionVector&
curSol)
151 this->
setSubProblems(std::make_tuple(bulkProblem, lowDimProblem));
153 integrationOrder_ = getParam<int>(
"MixedDimension.IntegrationOrder", 1);
154 asImp_().computePointSourceData(integrationOrder_);
178 template<std::
size_t i, std::
size_t j>
180 const Element<i>& element,
181 Dune::index_constant<j> domainJ)
const
183 static_assert(i != j,
"A domain cannot be coupled to itself!");
185 const auto eIdx = this->
problem(domainI).gridGeometry().elementMapper().index(element);
204 template<std::
size_t i, std::
size_t j,
class LocalAssemblerI>
206 const LocalAssemblerI& localAssemblerI,
207 Dune::index_constant<j> domainJ,
208 std::size_t dofIdxGlobalJ)
210 static_assert(i != j,
"A domain cannot be coupled to itself!");
212 typename LocalAssemblerI::LocalResidual::ElementResidualVector residual;
214 const auto& element = localAssemblerI.element();
215 const auto& fvGeometry = localAssemblerI.fvGeometry();
216 const auto& curElemVolVars = localAssemblerI.curElemVolVars();
218 residual.resize(fvGeometry.numScv());
219 for (
const auto& scv : scvs(fvGeometry))
221 auto couplingSource = this->
problem(domainI).scvPointSources(element, fvGeometry, curElemVolVars, scv);
222 couplingSource += this->
problem(domainI).source(element, fvGeometry, curElemVolVars, scv);
224 residual[scv.indexInElement()] = couplingSource;
245 std::cout <<
"Initializing the point sources..." << std::endl;
255 const auto& bulkGridGeometry = this->
problem(bulkIdx).gridGeometry();
256 const auto& lowDimGridGeometry = this->
problem(lowDimIdx).gridGeometry();
261 pointSourceData_.reserve(this->
glue().size());
262 averageDistanceToBulkCell_.reserve(this->
glue().size());
263 for (
const auto& is : intersections(this->
glue()))
266 const auto& inside = is.targetEntity(0);
268 const auto intersectionGeometry = is.geometry();
271 const auto& quad = Dune::QuadratureRules<Scalar, lowDimDim>::rule(intersectionGeometry.type(), order);
272 const std::size_t lowDimElementIdx = lowDimGridGeometry.elementMapper().index(inside);
275 for (
auto&& qp : quad)
278 for (std::size_t outsideIdx = 0; outsideIdx < is.numDomainNeighbors(); ++outsideIdx)
280 const auto& outside = is.domainEntity(outsideIdx);
281 const std::size_t bulkElementIdx = bulkGridGeometry.elementMapper().index(outside);
284 const auto globalPos = intersectionGeometry.global(qp.position());
286 const auto qpweight = qp.weight();
287 const auto ie = intersectionGeometry.integrationElement(qp.position());
288 pointSources(bulkIdx).emplace_back(globalPos,
id, qpweight, ie, bulkElementIdx);
289 pointSources(bulkIdx).back().setEmbeddings(is.numDomainNeighbors());
290 pointSources(lowDimIdx).emplace_back(globalPos,
id, qpweight, ie, lowDimElementIdx);
291 pointSources(lowDimIdx).back().setEmbeddings(is.numDomainNeighbors());
295 PointSourceData psData;
297 if constexpr (isBox<lowDimIdx>())
299 using ShapeValues = std::vector<Dune::FieldVector<Scalar, 1> >;
300 const auto lowDimGeometry = this->
problem(lowDimIdx).gridGeometry().element(lowDimElementIdx).geometry();
301 ShapeValues shapeValues;
302 this->
getShapeValues(lowDimIdx, this->
problem(lowDimIdx).gridGeometry(), lowDimGeometry, globalPos, shapeValues);
303 psData.addLowDimInterpolation(shapeValues, this->
vertexIndices(lowDimIdx, lowDimElementIdx), lowDimElementIdx);
307 psData.addLowDimInterpolation(lowDimElementIdx);
311 if constexpr (isBox<bulkIdx>())
313 using ShapeValues = std::vector<Dune::FieldVector<Scalar, 1> >;
314 const auto bulkGeometry = this->
problem(bulkIdx).gridGeometry().element(bulkElementIdx).geometry();
315 ShapeValues shapeValues;
316 this->
getShapeValues(bulkIdx, this->
problem(bulkIdx).gridGeometry(), bulkGeometry, globalPos, shapeValues);
317 psData.addBulkInterpolation(shapeValues, this->
vertexIndices(bulkIdx, bulkElementIdx), bulkElementIdx);
321 psData.addBulkInterpolation(bulkElementIdx);
332 if (isBox<bulkIdx>())
334 const auto& vertices = this->
vertexIndices(bulkIdx, bulkElementIdx);
336 vertices.begin(), vertices.end());
340 this->
couplingStencils(lowDimIdx)[lowDimElementIdx].push_back(bulkElementIdx);
345 if (isBox<lowDimIdx>())
347 const auto& vertices = this->
vertexIndices(lowDimIdx, lowDimElementIdx);
349 vertices.begin(), vertices.end());
354 this->
couplingStencils(bulkIdx)[bulkElementIdx].push_back(lowDimElementIdx);
361 using namespace Dune::Hybrid;
362 forEach(integralRange(std::integral_constant<std::size_t, MDTraits::numSubDomains>{}), [&](
const auto domainIdx)
366 std::sort(stencil.second.begin(), stencil.second.end());
367 stencil.second.erase(std::unique(stencil.second.begin(), stencil.second.end()), stencil.second.end());
371 std::cout <<
"took " << watch.elapsed() <<
" seconds." << std::endl;
381 {
return pointSourceData_[id]; }
384 template<std::
size_t id>
385 const GridView<id>&
gridView(Dune::index_constant<id> domainIdx)
const
386 {
return this->
problem(domainIdx).gridGeometry().gridView(); }
390 {
return pointSourceData_[id].interpolateBulk(this->
curSol(bulkIdx)); }
394 {
return pointSourceData_[id].interpolateLowDim(this->
curSol(lowDimIdx)); }
398 {
return averageDistanceToBulkCell_[id]; }
402 {
return std::get<bulkIdx>(pointSources_); }
406 {
return std::get<lowDimIdx>(pointSources_); }
409 template<std::
size_t i>
410 const std::vector<PointSource<i>>&
pointSources(Dune::index_constant<i> dom)
const
411 {
return std::get<i>(pointSources_); }
414 template<std::
size_t i>
416 {
return std::get<i>(couplingStencils_); }
420 {
return pointSourceData_; }
423 template<std::
size_t i>
424 const CouplingStencil<i>&
emptyStencil(Dune::index_constant<i> dom)
const
425 {
return std::get<i>(emptyStencil_); }
432 template<std::
size_t i>
433 auto&
curSol(Dune::index_constant<i> domainIdx)
441 template<std::
size_t i>
442 const auto&
curSol(Dune::index_constant<i> domainIdx)
const
453 const auto& bulkGG =
asImp_().problem(bulkIdx).gridGeometry();
454 const auto& lowDimGG =
asImp_().problem(lowDimIdx).gridGeometry();
456 auto connectedElementsBulk = Detail::computeConnectedElements(bulkGG);
457 auto connectedElementsLowDim = Detail::computeConnectedElements(lowDimGG);
461 for (
const auto& element : elements(bulkGG.gridView()))
463 const auto eIdx = bulkGG.elementMapper().index(element);
467 const auto& elems = connectedElementsBulk[dofIdx];
468 if (std::find(elems.begin(), elems.end(), eIdx) == elems.end())
469 connectedElementsBulk[dofIdx].push_back(eIdx);
476 std::array<std::vector<std::vector<std::size_t>>, 2> connectedElementsCoupling;
478 using namespace Dune::Hybrid;
479 forEach(integralRange(Dune::index_constant<MDTraits::numSubDomains>{}), [&](
const auto i)
481 connectedElementsCoupling[i()].resize(
asImp_().
problem(i).gridGeometry().numDofs());
482 forEach(integralRange(Dune::index_constant<MDTraits::numSubDomains>{}), [&](
const auto j)
484 if constexpr (i != j)
488 const auto eIdx =
asImp_().problem(j).gridGeometry().elementMapper().index(element);
491 const auto& elems = connectedElementsCoupling[i()][dofIdx];
492 if (std::find(elems.begin(), elems.end(), eIdx) == elems.end())
493 connectedElementsCoupling[i()][dofIdx].push_back(eIdx);
500 forEach(integralRange(Dune::index_constant<MDTraits::numSubDomains>{}), [&](
const auto i)
502 const auto& gg =
asImp_().problem(i).gridGeometry();
504 std::vector<int> colors(gg.gridView().size(0), -1);
507 std::vector<int> neighborColors; neighborColors.reserve(200);
508 std::vector<bool> colorUsed; colorUsed.reserve(200);
510 auto& elementSets = std::get<i>(elementSets_);
511 const auto& connectedElements = std::get<i>(std::tie(connectedElementsBulk, connectedElementsLowDim));
513 for (
const auto& element : elements(gg.gridView()))
516 neighborColors.clear();
517 Detail::addNeighborColors(gg, element, colors, connectedElements, neighborColors);
519 if constexpr (i == bulkIdx)
524 const auto eIdx = bulkGG.elementMapper().index(element);
527 for (
const auto nIdx : connectedElementsBulk[dofIdx])
528 neighborColors.push_back(colors[nIdx]);
532 forEach(integralRange(Dune::index_constant<MDTraits::numSubDomains>{}), [&](
const auto j)
534 if constexpr (i != j)
538 for (
auto eIdx : connectedElementsCoupling[j][dofIdx])
539 neighborColors.push_back(colors[eIdx]);
544 const auto color = Detail::smallestAvailableColor(neighborColors, colorUsed);
547 colors[gg.elementMapper().index(element)] = color;
550 if (color < elementSets.size())
551 elementSets[color].push_back(element.seed());
553 elementSets.push_back(std::vector<ElementSeed<i>>{ element.seed() });
557 std::cout << Fmt::format(
"Colored in {} seconds:\n", timer.elapsed());
558 forEach(integralRange(Dune::index_constant<MDTraits::numSubDomains>{}), [&](
const auto i)
560 std::cout << Fmt::format(
561 "-- {} elements in subdomain {} with {} colors\n",
563 i(), std::get<i>(elementSets_).size()
574 template<std::
size_t i,
class AssembleElementFunc>
577 if (std::get<i>(elementSets_).empty())
578 DUNE_THROW(Dune::InvalidStateException,
"Call computeColorsForAssembly before assembling in parallel!");
584 const auto& grid = this->
problem(domainId).gridGeometry().gridView().grid();
585 for (
const auto& elements : std::get<i>(elementSets_))
589 const auto element = grid.entity(elements[n]);
590 assembleElement(element);
601 {
return asImp_().emptyStencil(bulkIdx); }
607 template<std::
size_t id>
611 if constexpr (isBox<domainIdx>())
614 for (
const auto& element : elements(
gridView(domainIdx)))
616 constexpr int dim = GridView<domainIdx>::dimension;
617 const auto eIdx = this->
problem(domainIdx).gridGeometry().elementMapper().index(element);
618 this->
vertexIndices(domainIdx, eIdx).resize(element.subEntities(dim));
619 for (
int i = 0; i < element.subEntities(dim); ++i)
620 this->
vertexIndices(domainIdx, eIdx)[i] = this->
problem(domainIdx).gridGeometry().vertexMapper().subIndex(element, i, dim);
626 template<std::
size_t i,
class FVGG,
class Geometry,
class ShapeValues>
627 void getShapeValues(Dune::index_constant<i> domainI,
const FVGG& gridGeometry,
const Geometry& geo,
const GlobalPosition& globalPos, ShapeValues& shapeValues)
631 const auto ipLocal = geo.local(globalPos);
632 const auto& localBasis = this->
problem(domainI).gridGeometry().feCache().get(geo.type()).localBasis();
633 localBasis.evaluateFunction(ipLocal, shapeValues);
636 DUNE_THROW(Dune::InvalidStateException,
"Shape values requested for other discretization than box!");
648 pointSourceData_.clear();
649 averageDistanceToBulkCell_.clear();
657 const auto& bulkGridGeometry = this->
problem(bulkIdx).gridGeometry();
658 const auto& lowDimGridGeometry = this->
problem(lowDimIdx).gridGeometry();
661 glue_->build(bulkGridGeometry.boundingBoxTree(), lowDimGridGeometry.boundingBoxTree());
666 {
return pointSourceData_; }
670 {
return averageDistanceToBulkCell_; }
673 template<std::
size_t i>
675 {
return std::get<i>(pointSources_); }
678 template<std::
size_t i>
680 {
return std::get<i>(couplingStencils_); }
683 template<std::
size_t i>
684 std::vector<GridIndex<i>>&
vertexIndices(Dune::index_constant<i> dom, GridIndex<i> eIdx)
685 {
return std::get<i>(vertexIndices_)[eIdx]; }
688 template<std::
size_t i>
689 std::vector<std::vector<GridIndex<i>>>&
vertexIndices(Dune::index_constant<i> dom)
690 {
return std::get<i>(vertexIndices_); }
697 {
return *
static_cast<Implementation *
>(
this); }
701 {
return *
static_cast<const Implementation *
>(
this); }
709 std::tuple<std::vector<PointSource<bulkIdx>>, std::vector<PointSource<lowDimIdx>>> pointSources_;
710 std::vector<PointSourceData> pointSourceData_;
711 std::vector<Scalar> averageDistanceToBulkCell_;
714 std::tuple<std::vector<std::vector<GridIndex<bulkIdx>>>,
715 std::vector<std::vector<GridIndex<lowDimIdx>>>> vertexIndices_;
717 std::tuple<CouplingStencil<bulkIdx>, CouplingStencil<lowDimIdx>> emptyStencil_;
720 std::shared_ptr<GlueType> glue_;
723 int integrationOrder_ = 1;
727 std::deque<std::vector<ElementSeed<bulkIdx>>>,
728 std::deque<std::vector<ElementSeed<lowDimIdx>>>
Coloring schemes for shared-memory-parallel assembly.
Parallel for loop (multithreading)
A helper to deduce a vector with the same size as numbers of equations.
The available discretization methods in Dumux.
Formatting based on the fmt-library which implements std::format of C++20.
Algorithms that finds which geometric entities intersect.
Helper functions for distance queries.
An integration point source class, i.e. sources located at a single point in space associated with a ...
Data associated with a point source.
A class glueing two grids of potentially different dimension geometrically. Intersections are compute...
auto volume(const Geometry &geo, unsigned int integrationOrder=4)
The volume of a given geometry.
Definition: volume.hh:171
static Geometry::ctype averageDistancePointGeometry(const typename Geometry::GlobalCoordinate &p, const Geometry &geometry, std::size_t integrationOrder=2)
Compute the average distance from a point to a geometry by integration.
Definition: distance.hh:41
void parallelFor(const std::size_t count, const FunctorType &functor)
A parallel for loop (multithreading)
Definition: parallel_for.hh:172
typename NumEqVectorTraits< PrimaryVariables >::type NumEqVector
A vector with the same size as numbers of equations This is the default implementation and has to be ...
Definition: numeqvector.hh:46
Adaption of the non-isothermal two-phase two-component flow model to problems with CO2.
Definition: adapt.hh:29
typename GetProp< TypeTag, Property >::type GetPropType
get the type alias defined in the property
Definition: propertysystem.hh:180
constexpr Box box
Definition: method.hh:136
Structure to define the index types used for grid and local indices.
Definition: indextraits.hh:38
A vector of primary variables.
Definition: common/properties.hh:49
Property to specify the type of a problem which has to be solved.
Definition: common/properties.hh:55
Definition: common/properties.hh:100
A class representing the intersection entities two geometric entity sets.
Definition: intersectionentityset.hh:55
The interface of the coupling manager for multi domain problems.
Definition: multidomain/couplingmanager.hh:60
void setSubProblems(const std::tuple< std::shared_ptr< SubProblems >... > &problems)
set the pointers to the sub problems
Definition: multidomain/couplingmanager.hh:299
const Problem< i > & problem(Dune::index_constant< i > domainIdx) const
Return a reference to the sub problem.
Definition: multidomain/couplingmanager.hh:321
SubSolutionVector< i > & curSol(Dune::index_constant< i > domainIdx)
the solution vector of the subproblem
Definition: multidomain/couplingmanager.hh:350
void updateSolution(const SolutionVector &curSol)
Updates the entire solution vector, e.g. before assembly or after grid adaption Overload might want t...
Definition: multidomain/couplingmanager.hh:231
the default point source traits
Definition: couplingmanagerbase.hh:57
Manages the coupling between bulk elements and lower dimensional elements Point sources on each integ...
Definition: couplingmanagerbase.hh:83
std::vector< GridIndex< i > > & vertexIndices(Dune::index_constant< i > dom, GridIndex< i > eIdx)
Return a reference to the vertex indices.
Definition: couplingmanagerbase.hh:684
Scalar averageDistance(std::size_t id) const
return the average distance to the coupled bulk cell center
Definition: couplingmanagerbase.hh:397
Implementation & asImp_()
Returns the implementation of the problem (i.e. static polymorphism)
Definition: couplingmanagerbase.hh:696
const std::vector< PointSource< i > > & pointSources(Dune::index_constant< i > dom) const
Return the point source if domain i.
Definition: couplingmanagerbase.hh:410
const CouplingStencil< bulkIdx > & extendedSourceStencil(std::size_t eIdx) const
Extended source stencil (for the bulk domain)
Definition: couplingmanagerbase.hh:600
PSTraits PointSourceTraits
export the point source traits
Definition: couplingmanagerbase.hh:119
EmbeddedCouplingManagerBase(std::shared_ptr< const GridGeometry< bulkIdx > > bulkGridGeometry, std::shared_ptr< const GridGeometry< lowDimIdx > > lowDimGridGeometry)
Constructor.
Definition: couplingmanagerbase.hh:135
const CouplingStencils< i > & couplingStencils(Dune::index_constant< i > dom) const
Return reference to bulk coupling stencil member of domain i.
Definition: couplingmanagerbase.hh:415
void updateAfterGridAdaption(std::shared_ptr< const GridGeometry< bulkIdx > > bulkGridGeometry, std::shared_ptr< const GridGeometry< lowDimIdx > > lowDimGridGeometry)
call this after grid adaption
Definition: couplingmanagerbase.hh:126
const GridView< id > & gridView(Dune::index_constant< id > domainIdx) const
Return a reference to the bulk problem.
Definition: couplingmanagerbase.hh:385
const Implementation & asImp_() const
Returns the implementation of the problem (i.e. static polymorphism)
Definition: couplingmanagerbase.hh:700
std::vector< Scalar > & averageDistanceToBulkCell()
Return reference to average distances to bulk cell.
Definition: couplingmanagerbase.hh:669
const auto & curSol(Dune::index_constant< i > domainIdx) const
the solution vector of the subproblem
Definition: couplingmanagerbase.hh:442
const CouplingStencil< i > & emptyStencil(Dune::index_constant< i > dom) const
Return a reference to an empty stencil.
Definition: couplingmanagerbase.hh:424
const std::vector< PointSource< bulkIdx > > & bulkPointSources() const
Return reference to bulk point sources.
Definition: couplingmanagerbase.hh:401
auto & curSol(Dune::index_constant< i > domainIdx)
the solution vector of the subproblem
Definition: couplingmanagerbase.hh:433
const PointSourceData & pointSourceData(std::size_t id) const
Methods to be accessed by the subproblems.
Definition: couplingmanagerbase.hh:380
std::vector< std::vector< GridIndex< i > > > & vertexIndices(Dune::index_constant< i > dom)
Return a reference to the vertex indices container.
Definition: couplingmanagerbase.hh:689
void glueGrids()
compute the intersections between the two grids
Definition: couplingmanagerbase.hh:655
MDTraits MultiDomainTraits
export traits
Definition: couplingmanagerbase.hh:117
void computePointSourceData(std::size_t order=1, bool verbose=false)
Definition: couplingmanagerbase.hh:240
std::vector< PointSourceData > & pointSourceData()
Return reference to point source data vector member.
Definition: couplingmanagerbase.hh:665
const CouplingStencil< j > & couplingStencil(Dune::index_constant< i > domainI, const Element< i > &element, Dune::index_constant< j > domainJ) const
Methods to be accessed by the assembly.
Definition: couplingmanagerbase.hh:179
PrimaryVariables< lowDimIdx > lowDimPriVars(std::size_t id) const
Return data for a low dim point source with the identifier id.
Definition: couplingmanagerbase.hh:393
void getShapeValues(Dune::index_constant< i > domainI, const FVGG &gridGeometry, const Geometry &geo, const GlobalPosition &globalPos, ShapeValues &shapeValues)
compute the shape function for a given point and geometry
Definition: couplingmanagerbase.hh:627
const std::vector< PointSource< lowDimIdx > > & lowDimPointSources() const
Return reference to low dim point sources.
Definition: couplingmanagerbase.hh:405
void assembleMultithreaded(Dune::index_constant< i > domainId, AssembleElementFunc &&assembleElement) const
Execute assembly kernel in parallel.
Definition: couplingmanagerbase.hh:575
void clear()
Clear all internal data members.
Definition: couplingmanagerbase.hh:640
void computeColorsForAssembly()
Compute colors for multithreaded assembly.
Definition: couplingmanagerbase.hh:448
const GlueType & glue() const
Definition: couplingmanagerbase.hh:692
decltype(auto) evalCouplingResidual(Dune::index_constant< i > domainI, const LocalAssemblerI &localAssemblerI, Dune::index_constant< j > domainJ, std::size_t dofIdxGlobalJ)
evaluates the element residual of a coupled element of domain i which depends on the variables at the...
Definition: couplingmanagerbase.hh:205
void init(std::shared_ptr< Problem< bulkIdx > > bulkProblem, std::shared_ptr< Problem< lowDimIdx > > lowDimProblem, const SolutionVector &curSol)
Methods to be accessed by main.
Definition: couplingmanagerbase.hh:146
CouplingStencils< i > & couplingStencils(Dune::index_constant< i > dom)
Return reference to bulk coupling stencil member of domain i.
Definition: couplingmanagerbase.hh:679
std::vector< PointSource< i > > & pointSources(Dune::index_constant< i > dom)
Return the point source if domain i.
Definition: couplingmanagerbase.hh:674
std::unordered_map< GridIndex< id >, CouplingStencil< id > > CouplingStencils
export stencil types
Definition: couplingmanagerbase.hh:121
PrimaryVariables< bulkIdx > bulkPriVars(std::size_t id) const
Return data for a bulk point source with the identifier id.
Definition: couplingmanagerbase.hh:389
void precomputeVertexIndices(Dune::index_constant< id > domainIdx)
computes the vertex indices per element for the box method
Definition: couplingmanagerbase.hh:608
std::size_t idCounter_
id generator for point sources
Definition: couplingmanagerbase.hh:704
const std::vector< PointSourceData > & pointSourceData() const
Return reference to point source data vector member.
Definition: couplingmanagerbase.hh:419
An integration point source class with an identifier to attach data and a quadrature weight and integ...
Definition: integrationpointsource.hh:45
A helper class calculating a DOF-index to point source map.
Definition: integrationpointsource.hh:112
A point source data class used for integration in multidimensional models.
Definition: pointsourcedata.hh:43
A linear system assembler (residual and Jacobian) for finite volume schemes with multiple domains.
Declares all properties used in Dumux.
The interface of the coupling manager for multi domain problems.