3.6-git
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
o2.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*****************************************************************************
4 * See the file COPYING for full copying permissions. *
5 * *
6 * This program is free software: you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation, either version 3 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 *****************************************************************************/
24#ifndef DUMUX_O2_HH
25#define DUMUX_O2_HH
26
28
29#include <cmath>
30
33
34namespace Dumux {
35namespace Components {
36
43template <class Scalar>
44class O2
45: public Components::Base<Scalar, O2<Scalar> >
46, public Components::Gas<Scalar, O2<Scalar> >
47{
49
50public:
54 static std::string name()
55 { return "O2"; }
56
60 static constexpr Scalar molarMass()
61 { return 32e-3; }
62
66 static constexpr Scalar criticalTemperature()
67 { return 154.581; /* [K] */ }
68
72 static constexpr Scalar criticalPressure()
73 { return 5.0804e6; /* [N/m^2] */ }
74
78 static constexpr Scalar tripleTemperature()
79 { return 54.359; /* [K] */ }
80
84 static constexpr Scalar triplePressure()
85 { return 148.0; /* [N/m^2] */ }
86
98 {
99 if (T > criticalTemperature())
100 return criticalPressure();
101 if (T < tripleTemperature())
102 return 0; // O2 is solid: We don't take sublimation into account
103
104 // vapor pressure between tripe and critical points. See the
105 // paper of Prydz for a discussion
106 Scalar X =
107 (1 - tripleTemperature()/T) /
109 const Scalar A = 7.568956;
110 const Scalar B = 5.004836;
111 const Scalar C = -2.137460;
112 const Scalar D = 3.454481;
113 const Scalar epsilon = 1.514;
114
115 using std::exp;
116 using std::pow;
117 return triplePressure()*exp(X*(A + X*(B + C*X) + D*pow(1 - X, epsilon)));
118 }
119
123 static constexpr bool gasIsCompressible()
124 { return true; }
125
135 {
136 // Assume an ideal gas
138 }
139
148
152 static constexpr bool gasIsIdeal()
153 { return true; }
154
162 {
163 // Assume an ideal gas
165 }
166
175 {
177 }
178
192 {
193 // method of Joback
194 const Scalar cpVapA = 28.11;
195 const Scalar cpVapB = -3.680e-6;
196 const Scalar cpVapC = 1.746e-5;
197 const Scalar cpVapD = -1.065e-8;
198
199 return
200 1/molarMass()* // conversion from [J/(mol*K)] to [J/(kg*K)]
201 (cpVapA + T*
202 (cpVapB/2 + T*
203 (cpVapC/3 + T*
204 (cpVapD/4))));
205 }
206
218 {
219 const Scalar Tc = criticalTemperature();
220 const Scalar Vc = 73.4; // critical specific volume [cm^3/mol]
221 const Scalar omega = 0.025; // accentric factor
222 const Scalar M = molarMass() * 1e3; // molar mas [g/mol]
223 const Scalar dipole = 0.0; // dipole moment [debye]
224
225 using std::sqrt;
226 Scalar mu_r4 = 131.3 * dipole / sqrt(Vc * Tc);
227 mu_r4 *= mu_r4;
228 mu_r4 *= mu_r4;
229
230 Scalar Fc = 1 - 0.2756*omega + 0.059035*mu_r4;
231 Scalar Tstar = 1.2593 * temperature/Tc;
232
233 using std::pow;
234 using std::exp;
235 Scalar Omega_v =
236 1.16145*pow(Tstar, -0.14874) +
237 0.52487*exp(- 0.77320*Tstar) +
238 2.16178*exp(- 2.43787*Tstar);
239 Scalar mu = 40.785*Fc*sqrt(M*temperature)/(pow(Vc, 2./3)*Omega_v);
240
241 // conversion from micro poise to Pa s
242 return mu/1e6 / 10;
243 }
244
257 {
258 return 8.044e-5 * (temperature - 273.15) + 0.024486;
259 }
260};
261
262} // end namespace Components
263
264} // end namespace Dumux
265
266#endif
Interface for components that have a gas state.
Relations valid for an ideal gas.
Adaption of the non-isothermal two-phase two-component flow model to problems with CO2.
Definition: adapt.hh:29
std::string temperature() noexcept
I/O name of temperature for equilibrium models.
Definition: name.hh:51
std::string pressure(int phaseIdx) noexcept
I/O name of pressure for multiphase systems.
Definition: name.hh:34
std::string density(int phaseIdx) noexcept
I/O name of density for multiphase systems.
Definition: name.hh:65
Base class for all components Components provide the thermodynamic relations for the liquid,...
Definition: components/base.hh:59
Scalar Scalar
export the scalar type used by the component
Definition: components/base.hh:63
Interface for components that have a gas state.
Definition: gas.hh:41
Properties of pure molecular oxygen .
Definition: o2.hh:47
static constexpr Scalar gasPressure(Scalar temperature, Scalar density)
The pressure of gaseous in at a given density and temperature.
Definition: o2.hh:161
static Scalar gasEnthalpy(Scalar temperature, Scalar pressure)
Specific enthalpy of pure oxygen gas.
Definition: o2.hh:173
static Scalar gasMolarDensity(Scalar temperature, Scalar pressure)
The molar density of pure in , depending on pressure and temperature.
Definition: o2.hh:146
static constexpr Scalar criticalTemperature()
Returns the critical temperature in of molecular oxygen.
Definition: o2.hh:66
static std::string name()
A human readable name for the .
Definition: o2.hh:54
static constexpr bool gasIsCompressible()
Returns true if the gas phase is assumed to be compressible.
Definition: o2.hh:123
static constexpr Scalar molarMass()
The molar mass in of molecular oxygen.
Definition: o2.hh:60
static Scalar vaporPressure(Scalar T)
The vapor pressure in of pure molecular oxygen at a given temperature.
Definition: o2.hh:97
static Scalar gasHeatCapacity(Scalar T, Scalar pressure)
Specific isobaric heat capacity of pure oxygen gas.
Definition: o2.hh:190
static Scalar gasViscosity(Scalar temperature, Scalar pressure)
The dynamic viscosity of at a given pressure and temperature.
Definition: o2.hh:217
static constexpr Scalar triplePressure()
Returns the pressure in at molecular oxygen's triple point.
Definition: o2.hh:84
static constexpr Scalar criticalPressure()
Returns the critical pressure in of molecular oxygen.
Definition: o2.hh:72
static constexpr bool gasIsIdeal()
Returns true if the gas phase is assumed to be ideal.
Definition: o2.hh:152
static constexpr Scalar gasDensity(Scalar temperature, Scalar pressure)
The density in of pure at a given pressure and temperature.
Definition: o2.hh:134
static constexpr Scalar gasThermalConductivity(Scalar temperature, Scalar pressure)
Thermal conductivity of nitrogen.
Definition: o2.hh:256
static constexpr Scalar tripleTemperature()
Returns the temperature in at molecular oxygen's triple point.
Definition: o2.hh:78
Relations valid for an ideal gas.
Definition: idealgas.hh:37
static constexpr Scalar pressure(Scalar temperature, Scalar rhoMolar)
The pressure of the gas in , depending on the molar density and temperature.
Definition: idealgas.hh:60
static constexpr Scalar density(Scalar avgMolarMass, Scalar temperature, Scalar pressure)
The density of the gas in , depending on pressure, temperature and average molar mass of the gas.
Definition: idealgas.hh:49
static constexpr Scalar molarDensity(Scalar temperature, Scalar pressure)
The molar density of the gas , depending on pressure and temperature.
Definition: idealgas.hh:70
Base class for all components Components provide the thermodynamic relations for the liquid,...