3.5-git
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
couplingmanager1d3d_average.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*****************************************************************************
4 * See the file COPYING for full copying permissions. *
5 * *
6 * This program is free software: you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation, either version 3 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 *****************************************************************************/
25#ifndef DUMUX_MULTIDOMAIN_EMBEDDED_COUPLINGMANAGER_1D3D_AVERAGE_HH
26#define DUMUX_MULTIDOMAIN_EMBEDDED_COUPLINGMANAGER_1D3D_AVERAGE_HH
27
28#include <vector>
29
30#include <dune/common/timer.hh>
31#include <dune/geometry/quadraturerules.hh>
32
33#include <dumux/common/tag.hh>
36
38
43
44namespace Dumux {
45
46namespace Embedded1d3dCouplingMode {
47struct Average : public Utility::Tag<Average> {
48 static std::string name() { return "average"; }
49};
50
51inline constexpr Average average{};
52} // end namespace Embedded1d3dCouplingMode
53
54// forward declaration
55template<class MDTraits, class CouplingMode>
56class Embedded1d3dCouplingManager;
57
64template<class MDTraits>
65class Embedded1d3dCouplingManager<MDTraits, Embedded1d3dCouplingMode::Average>
66: public EmbeddedCouplingManagerBase<MDTraits, Embedded1d3dCouplingManager<MDTraits, Embedded1d3dCouplingMode::Average>,
67 CircleAveragePointSourceTraits<MDTraits>>
68{
71 using Scalar = typename MDTraits::Scalar;
72 using SolutionVector = typename MDTraits::SolutionVector;
73 using PointSourceData = typename ParentType::PointSourceTraits::PointSourceData;
74
75 static constexpr auto bulkIdx = typename MDTraits::template SubDomain<0>::Index();
76 static constexpr auto lowDimIdx = typename MDTraits::template SubDomain<1>::Index();
77
78 // the sub domain type aliases
79 template<std::size_t id> using SubDomainTypeTag = typename MDTraits::template SubDomain<id>::TypeTag;
80 template<std::size_t id> using Problem = GetPropType<SubDomainTypeTag<id>, Properties::Problem>;
81 template<std::size_t id> using GridGeometry = GetPropType<SubDomainTypeTag<id>, Properties::GridGeometry>;
82 template<std::size_t id> using GridView = typename GridGeometry<id>::GridView;
83 template<std::size_t id> using Element = typename GridView<id>::template Codim<0>::Entity;
84 template<std::size_t id> using GridIndex = typename IndexTraits<GridView<id>>::GridIndex;
85
86 using GlobalPosition = typename Element<bulkIdx>::Geometry::GlobalCoordinate;
87
88 template<std::size_t id>
89 static constexpr bool isBox()
90 { return GridGeometry<id>::discMethod == DiscretizationMethods::box; }
91
92
93public:
94 enum {
95 bulkDim = GridView<bulkIdx>::dimension,
96 lowDimDim = GridView<lowDimIdx>::dimension,
97 dimWorld = GridView<bulkIdx>::dimensionworld
98 };
99
100 static constexpr Embedded1d3dCouplingMode::Average couplingMode{};
101
102 using ParentType::ParentType;
103
104 void init(std::shared_ptr<Problem<bulkIdx>> bulkProblem,
105 std::shared_ptr<Problem<lowDimIdx>> lowDimProblem,
106 const SolutionVector& curSol)
107 {
108 ParentType::init(bulkProblem, lowDimProblem, curSol);
109 computeLowDimVolumeFractions();
110 }
111
118 template<std::size_t id, class JacobianPattern>
119 void extendJacobianPattern(Dune::index_constant<id> domainI, JacobianPattern& pattern) const
120 {
121 extendedSourceStencil_.extendJacobianPattern(*this, domainI, pattern);
122 }
123
131 template<std::size_t i, class LocalAssemblerI, class JacobianMatrixDiagBlock, class GridVariables>
132 void evalAdditionalDomainDerivatives(Dune::index_constant<i> domainI,
133 const LocalAssemblerI& localAssemblerI,
134 const typename LocalAssemblerI::LocalResidual::ElementResidualVector&,
135 JacobianMatrixDiagBlock& A,
136 GridVariables& gridVariables)
137 {
138 extendedSourceStencil_.evalAdditionalDomainDerivatives(*this, domainI, localAssemblerI, A, gridVariables);
139 }
140
141 /* \brief Compute integration point point sources and associated data
142 *
143 * This method uses grid glue to intersect the given grids. Over each intersection
144 * we later need to integrate a source term. This method places point sources
145 * at each quadrature point and provides the point source with the necessary
146 * information to compute integrals (quadrature weight and integration element)
147 * \param order The order of the quadrature rule for integration of sources over an intersection
148 * \param verbose If the point source computation is verbose
149 */
150 void computePointSourceData(std::size_t order = 1, bool verbose = false)
151 {
152 // Initialize the bulk bounding box tree
153 const auto& bulkGridGeometry = this->problem(bulkIdx).gridGeometry();
154 const auto& lowDimGridGeometry = this->problem(lowDimIdx).gridGeometry();
155 const auto& bulkTree = bulkGridGeometry.boundingBoxTree();
156
157 // initialize the maps
158 // do some logging and profiling
159 Dune::Timer watch;
160 std::cout << "Initializing the point sources..." << std::endl;
161
162 // clear all internal members like pointsource vectors and stencils
163 // initializes the point source id counter
164 this->clear();
165 extendedSourceStencil_.clear();
166
167 // precompute the vertex indices for efficiency
168 this->precomputeVertexIndices(bulkIdx);
169 this->precomputeVertexIndices(lowDimIdx);
170
171 // intersect the bounding box trees
172 this->glueGrids();
173
174 // iterate over all intersection and add point sources
175 const auto& lowDimProblem = this->problem(lowDimIdx);
176 for (const auto& is : intersections(this->glue()))
177 {
178 // all inside elements are identical...
179 const auto& lowDimElement = is.targetEntity(0);
180 const auto lowDimElementIdx = lowDimGridGeometry.elementMapper().index(lowDimElement);
181
182 // get the intersection geometry
183 const auto intersectionGeometry = is.geometry();
184 // get the Gaussian quadrature rule for the local intersection
185 const auto& quad = Dune::QuadratureRules<Scalar, lowDimDim>::rule(intersectionGeometry.type(), order);
186
187 // apply the Gaussian quadrature rule and define point sources at each quadrature point
188 // note that the approximation is not optimal if
189 // (a) the one-dimensional elements are too large,
190 // (b) whenever a one-dimensional element is split between two or more elements,
191 // (c) when gradients of important quantities in the three-dimensional domain are large.
192
193 // iterate over all quadrature points
194 for (auto&& qp : quad)
195 {
196 // global position of the quadrature point
197 const auto globalPos = intersectionGeometry.global(qp.position());
198
199 const auto bulkElementIndices = intersectingEntities(globalPos, bulkTree);
200
201 // do not add a point source if the qp is outside of the 3d grid
202 // this is equivalent to having a source of zero for that qp
203 if (bulkElementIndices.empty())
204 continue;
205
207 // get circle average connectivity and interpolation data
209
210 static const auto numIp = getParam<int>("MixedDimension.NumCircleSegments");
211 const auto radius = lowDimProblem.spatialParams().radius(lowDimElementIdx);
212 const auto normal = intersectionGeometry.corner(1)-intersectionGeometry.corner(0);
213 const auto circleAvgWeight = 2*M_PI*radius/numIp;
214 const auto integrationElement = intersectionGeometry.integrationElement(qp.position());
215 const auto qpweight = qp.weight();
216
217 const auto circlePoints = EmbeddedCoupling::circlePoints(globalPos, normal, radius, numIp);
218 std::vector<Scalar> circleIpWeight; circleIpWeight.reserve(circlePoints.size());
219 std::vector<GridIndex<bulkIdx>> circleStencil; circleStencil.reserve(circlePoints.size());
220
221 // for box
222 std::vector<const std::vector<GridIndex<bulkIdx>>*> circleCornerIndices;
223 using ShapeValues = std::vector<Dune::FieldVector<Scalar, 1> >;
224 std::vector<ShapeValues> circleShapeValues;
225
226 // go over all points of the average operator
227 int insideCirclePoints = 0;
228 for (int k = 0; k < circlePoints.size(); ++k)
229 {
230 const auto circleBulkElementIndices = intersectingEntities(circlePoints[k], bulkTree);
231 if (circleBulkElementIndices.empty())
232 continue;
233
234 ++insideCirclePoints;
235 const auto localCircleAvgWeight = circleAvgWeight / circleBulkElementIndices.size();
236 for (const auto bulkElementIdx : circleBulkElementIndices)
237 {
238 circleStencil.push_back(bulkElementIdx);
239 circleIpWeight.push_back(localCircleAvgWeight);
240
241 // precompute interpolation data for box scheme for each cut bulk element
242 if constexpr (isBox<bulkIdx>())
243 {
244 const auto bulkElement = bulkGridGeometry.element(bulkElementIdx);
245 circleCornerIndices.push_back(&(this->vertexIndices(bulkIdx, bulkElementIdx)));
246
247 // evaluate shape functions at the integration point
248 const auto bulkGeometry = bulkElement.geometry();
249 ShapeValues shapeValues;
250 this->getShapeValues(bulkIdx, bulkGridGeometry, bulkGeometry, circlePoints[k], shapeValues);
251 circleShapeValues.emplace_back(std::move(shapeValues));
252 }
253 }
254 }
255
256 // if the circle stencil is empty (that is the circle is entirely outside the domain)
257 // we do not add a (zero) point source
258 if (circleStencil.empty())
259 continue;
260
261 // export low dim circle stencil
262 if constexpr (isBox<bulkIdx>())
263 {
264 // we insert all vertices and make it unique later
265 for (const auto& vertices : circleCornerIndices)
266 {
267 this->couplingStencils(lowDimIdx)[lowDimElementIdx].insert(this->couplingStencils(lowDimIdx)[lowDimElementIdx].end(),
268 vertices->begin(), vertices->end());
269
270 }
271 }
272 else
273 {
274 this->couplingStencils(lowDimIdx)[lowDimElementIdx].insert(this->couplingStencils(lowDimIdx)[lowDimElementIdx].end(),
275 circleStencil.begin(), circleStencil.end());
276 }
277
278 // surface fraction that is inside the domain (only different than 1.0 on the boundary)
279 const auto surfaceFraction = Scalar(insideCirclePoints)/Scalar(circlePoints.size());
280
281 // loop over the bulk elements at the integration points (usually one except when it is on a face or edge or vertex)
282 for (auto bulkElementIdx : bulkElementIndices)
283 {
284 const auto id = this->idCounter_++;
285
286 this->pointSources(bulkIdx).emplace_back(globalPos, id, qpweight, integrationElement*surfaceFraction, bulkElementIdx);
287 this->pointSources(bulkIdx).back().setEmbeddings(bulkElementIndices.size());
288 this->pointSources(lowDimIdx).emplace_back(globalPos, id, qpweight, integrationElement*surfaceFraction, lowDimElementIdx);
289 this->pointSources(lowDimIdx).back().setEmbeddings(bulkElementIndices.size());
290
291 // pre compute additional data used for the evaluation of
292 // the actual solution dependent source term
293 PointSourceData psData;
294
295 if constexpr (isBox<lowDimIdx>())
296 {
297 ShapeValues shapeValues;
298 this->getShapeValues(lowDimIdx, lowDimGridGeometry, intersectionGeometry, globalPos, shapeValues);
299 psData.addLowDimInterpolation(shapeValues, this->vertexIndices(lowDimIdx, lowDimElementIdx), lowDimElementIdx);
300 }
301 else
302 {
303 psData.addLowDimInterpolation(lowDimElementIdx);
304 }
305
306 // add data needed to compute integral over the circle
307 if constexpr (isBox<bulkIdx>())
308 {
309 psData.addCircleInterpolation(circleCornerIndices, circleShapeValues, circleIpWeight, circleStencil);
310
311 const auto bulkGeometry = bulkGridGeometry.element(bulkElementIdx).geometry();
312 ShapeValues shapeValues;
313 this->getShapeValues(bulkIdx, bulkGridGeometry, bulkGeometry, globalPos, shapeValues);
314 psData.addBulkInterpolation(shapeValues, this->vertexIndices(bulkIdx, bulkElementIdx), bulkElementIdx);
315 }
316 else
317 {
318 psData.addCircleInterpolation(circleIpWeight, circleStencil);
319 psData.addBulkInterpolation(bulkElementIdx);
320 }
321
322 // publish point source data in the global vector
323 this->pointSourceData().emplace_back(std::move(psData));
324
325 // mean distance to outside element for source correction schemes
326 const auto outsideGeometry = bulkGridGeometry.element(bulkElementIdx).geometry();
327 this->averageDistanceToBulkCell().push_back(averageDistancePointGeometry(globalPos, outsideGeometry));
328
329 // export the bulk coupling stencil
330 if constexpr (isBox<lowDimIdx>())
331 {
332 this->couplingStencils(bulkIdx)[bulkElementIdx].insert(this->couplingStencils(bulkIdx)[bulkElementIdx].end(),
333 this->vertexIndices(lowDimIdx, lowDimElementIdx).begin(),
334 this->vertexIndices(lowDimIdx, lowDimElementIdx).end());
335
336 }
337 else
338 {
339 this->couplingStencils(bulkIdx)[bulkElementIdx].push_back(lowDimElementIdx);
340 }
341
342 // export bulk circle stencil
343 if constexpr (isBox<bulkIdx>())
344 {
345 // we insert all vertices and make it unique later
346 for (const auto& vertices : circleCornerIndices)
347 {
348 extendedSourceStencil_.stencil()[bulkElementIdx].insert(extendedSourceStencil_.stencil()[bulkElementIdx].end(),
349 vertices->begin(), vertices->end());
350
351 }
352 }
353 else
354 {
355 extendedSourceStencil_.stencil()[bulkElementIdx].insert(extendedSourceStencil_.stencil()[bulkElementIdx].end(),
356 circleStencil.begin(), circleStencil.end());
357 }
358 }
359 }
360 }
361
362 // make the circle stencil unique (for source derivatives)
363 for (auto&& stencil : extendedSourceStencil_.stencil())
364 {
365 std::sort(stencil.second.begin(), stencil.second.end());
366 stencil.second.erase(std::unique(stencil.second.begin(), stencil.second.end()), stencil.second.end());
367
368 // remove the vertices element (box)
369 if constexpr (isBox<bulkIdx>())
370 {
371 const auto& indices = this->vertexIndices(bulkIdx, stencil.first);
372 stencil.second.erase(std::remove_if(stencil.second.begin(), stencil.second.end(),
373 [&](auto i){ return std::find(indices.begin(), indices.end(), i) != indices.end(); }),
374 stencil.second.end());
375 }
376 // remove the own element (cell-centered)
377 else
378 {
379 stencil.second.erase(std::remove_if(stencil.second.begin(), stencil.second.end(),
380 [&](auto i){ return i == stencil.first; }),
381 stencil.second.end());
382 }
383 }
384
385 // make stencils unique
386 using namespace Dune::Hybrid;
387 forEach(integralRange(Dune::index_constant<2>{}), [&](const auto domainIdx)
388 {
389 for (auto&& stencil : this->couplingStencils(domainIdx))
390 {
391 std::sort(stencil.second.begin(), stencil.second.end());
392 stencil.second.erase(std::unique(stencil.second.begin(), stencil.second.end()), stencil.second.end());
393 }
394 });
395
396 std::cout << "took " << watch.elapsed() << " seconds." << std::endl;
397 }
398
401 {
402 // resize the storage vector
403 lowDimVolumeInBulkElement_.resize(this->gridView(bulkIdx).size(0));
404 // get references to the grid geometries
405 const auto& lowDimGridGeometry = this->problem(lowDimIdx).gridGeometry();
406 const auto& bulkGridGeometry = this->problem(bulkIdx).gridGeometry();
407
408 // compute the low dim volume fractions
409 for (const auto& is : intersections(this->glue()))
410 {
411 // all inside elements are identical...
412 const auto& inside = is.targetEntity(0);
413 const auto intersectionGeometry = is.geometry();
414 const auto lowDimElementIdx = lowDimGridGeometry.elementMapper().index(inside);
415
416 // compute the volume the low-dim domain occupies in the bulk domain if it were full-dimensional
417 const auto radius = this->problem(lowDimIdx).spatialParams().radius(lowDimElementIdx);
418 for (int outsideIdx = 0; outsideIdx < is.numDomainNeighbors(); ++outsideIdx)
419 {
420 const auto& outside = is.domainEntity(outsideIdx);
421 const auto bulkElementIdx = bulkGridGeometry.elementMapper().index(outside);
422 lowDimVolumeInBulkElement_[bulkElementIdx] += intersectionGeometry.volume()*M_PI*radius*radius;
423 }
424 }
425 }
426
430 // \{
431
433 Scalar radius(std::size_t id) const
434 {
435 const auto& data = this->pointSourceData()[id];
436 return this->problem(lowDimIdx).spatialParams().radius(data.lowDimElementIdx());
437 }
438
440 // For one-dimensional low dim domain we assume radial tubes
441 Scalar lowDimVolume(const Element<bulkIdx>& element) const
442 {
443 const auto eIdx = this->problem(bulkIdx).gridGeometry().elementMapper().index(element);
444 return lowDimVolumeInBulkElement_[eIdx];
445 }
446
448 // For one-dimensional low dim domain we assume radial tubes
449 Scalar lowDimVolumeFraction(const Element<bulkIdx>& element) const
450 {
451 const auto totalVolume = element.geometry().volume();
452 return lowDimVolume(element) / totalVolume;
453 }
454
455 // \}
456
457private:
460
462 std::vector<Scalar> lowDimVolumeInBulkElement_;
463};
464
465} // end namespace Dumux
466
467#endif
Defines the index types used for grid and local indices.
Helper class to create (named and comparable) tagged types.
Point source traits for average-based coupling modes.
Helper function to compute points on a circle.
Coupling manager for low-dimensional domains embedded in the bulk domain. Point sources on each integ...
Extended source stencil helper class for coupling managers.
Helper functions for distance queries.
Vector normal(const Vector &v)
Create a vector normal to the given one (v is expected to be non-zero)
Definition: normal.hh:36
std::vector< std::size_t > intersectingEntities(const Dune::FieldVector< ctype, dimworld > &point, const BoundingBoxTree< EntitySet > &tree, bool isCartesianGrid=false)
Compute all intersections between entities and a point.
Definition: intersectingentities.hh:112
static Geometry::ctype averageDistancePointGeometry(const typename Geometry::GlobalCoordinate &p, const Geometry &geometry, std::size_t integrationOrder=2)
Compute the average distance from a point to a geometry by integration.
Definition: distance.hh:39
void circlePoints(std::vector< GlobalPosition > &points, const std::vector< Scalar > &sincos, const GlobalPosition &center, const GlobalPosition &normal, const Scalar radius)
Definition: circlepoints.hh:50
Definition: adapt.hh:29
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property
Definition: propertysystem.hh:150
constexpr Box box
Definition: method.hh:139
constexpr Average average
Definition: couplingmanager1d3d_average.hh:51
Struture to define the index types used for grid and local indices.
Definition: indextraits.hh:38
Property to specify the type of a problem which has to be solved.
Definition: common/properties.hh:57
Definition: common/properties.hh:102
Helper class to create (named and comparable) tagged types Tags any given type. The tagged type is eq...
Definition: tag.hh:42
Manages the coupling between bulk elements and lower dimensional elements Point sources on each integ...
Definition: couplingmanager1d3d.hh:36
Definition: couplingmanager1d3d_average.hh:47
static std::string name()
Definition: couplingmanager1d3d_average.hh:48
Manages the coupling between bulk elements and lower dimensional elements Point sources on each integ...
Definition: couplingmanager1d3d_average.hh:68
void extendJacobianPattern(Dune::index_constant< id > domainI, JacobianPattern &pattern) const
extend the jacobian pattern of the diagonal block of domain i by those entries that are not already i...
Definition: couplingmanager1d3d_average.hh:119
void init(std::shared_ptr< Problem< bulkIdx > > bulkProblem, std::shared_ptr< Problem< lowDimIdx > > lowDimProblem, const SolutionVector &curSol)
Definition: couplingmanager1d3d_average.hh:104
void computeLowDimVolumeFractions()
Compute the low dim volume fraction in the bulk domain cells.
Definition: couplingmanager1d3d_average.hh:400
void computePointSourceData(std::size_t order=1, bool verbose=false)
Definition: couplingmanager1d3d_average.hh:150
Scalar lowDimVolumeFraction(const Element< bulkIdx > &element) const
The volume fraction the lower dimensional domain occupies in the bulk domain element.
Definition: couplingmanager1d3d_average.hh:449
void evalAdditionalDomainDerivatives(Dune::index_constant< i > domainI, const LocalAssemblerI &localAssemblerI, const typename LocalAssemblerI::LocalResidual::ElementResidualVector &, JacobianMatrixDiagBlock &A, GridVariables &gridVariables)
evaluate additional derivatives of the element residual of a domain with respect to dofs in the same ...
Definition: couplingmanager1d3d_average.hh:132
Scalar radius(std::size_t id) const
Methods to be accessed by the subproblems.
Definition: couplingmanager1d3d_average.hh:433
Scalar lowDimVolume(const Element< bulkIdx > &element) const
The volume the lower dimensional domain occupies in the bulk domain element.
Definition: couplingmanager1d3d_average.hh:441
Manages the coupling between bulk elements and lower dimensional elements Point sources on each integ...
Definition: couplingmanagerbase.hh:79
A class managing an extended source stencil.
Definition: extendedsourcestencil.hh:46
Declares all properties used in Dumux.