24#ifndef DUMUX_FVVELOCITY2P_HH
25#define DUMUX_FVVELOCITY2P_HH
27#include <dune/common/float_cmp.hh>
28#include <dune/grid/common/gridenums.hh>
59template<
class TypeTag>
75 using PrimaryVariables =
typename SolutionTypes::PrimaryVariables;
78 using Element =
typename GridView::Traits::template Codim<0>::Entity;
79 using Intersection =
typename GridView::Intersection;
81 using Geometry =
typename Element::Geometry;
82 using JacobianTransposed =
typename Geometry::JacobianTransposed;
86 dim = GridView::dimension, dimWorld = GridView::dimensionworld
91 pw = Indices::pressureW,
92 pn = Indices::pressureNw,
93 pGlobal = Indices::pressureGlobal,
94 vw = Indices::velocityW,
95 vn = Indices::velocityNw,
96 vt = Indices::velocityTotal,
97 sw = Indices::saturationW,
98 sn = Indices::saturationNw,
99 pressureIdx = Indices::pressureIdx,
100 saturationIdx = Indices::saturationIdx,
101 eqIdxPress = Indices::pressureEqIdx,
102 eqIdxSat = Indices::satEqIdx
106 wPhaseIdx = Indices::wPhaseIdx, nPhaseIdx = Indices::nPhaseIdx, numPhases = getPropValue<TypeTag, Properties::NumPhases>()
109 using GlobalPosition =
typename Element::Geometry::GlobalCoordinate;
110 using GravityVector = Dune::FieldVector<Scalar, dimWorld>;
111 using DimMatrix = Dune::FieldMatrix<Scalar, dim, dim>;
119 problem_(problem), gravity_(problem.gravity())
121 if (getPropValue<TypeTag, Properties::EnableCompressibility>() && velocityType_ == vt)
123 DUNE_THROW(Dune::NotImplemented,
124 "Total velocity - global pressure - model cannot be used with compressible fluids!");
126 if (velocityType_ != vw && velocityType_ != vn && velocityType_ != vt)
128 DUNE_THROW(Dune::NotImplemented,
"Velocity type not supported!");
131 density_[wPhaseIdx] = 0.;
132 density_[nPhaseIdx] = 0.;
133 viscosity_[wPhaseIdx] = 0.;
134 viscosity_[nPhaseIdx] = 0.;
136 vtkOutputLevel_ = getParam<int>(
"Vtk.OutputLevel");
142 if (!compressibility_)
144 const auto element = *problem_.gridView().template begin<0> ();
145 FluidState fluidState;
146 fluidState.setPressure(wPhaseIdx, problem_.referencePressure(element));
147 fluidState.setPressure(nPhaseIdx, problem_.referencePressure(element));
148 fluidState.setTemperature(problem_.temperature(element));
149 fluidState.setSaturation(wPhaseIdx, 1.);
150 fluidState.setSaturation(nPhaseIdx, 0.);
182 template<
class MultiWriter>
185 if (vtkOutputLevel_ > 0)
187 Dune::BlockVector < Dune::FieldVector<Scalar, dim> > &velocity = *(writer.template allocateManagedBuffer<Scalar,
188 dim>(problem_.gridView().size(0)));
189 Dune::BlockVector < Dune::FieldVector<Scalar, dim> > &velocitySecondPhase =
190 *(writer.template allocateManagedBuffer<Scalar, dim>(problem_.gridView().size(0)));
193 for (
const auto& element : elements(problem_.gridView()))
196 int eIdxGlobal = problem_.variables().index(element);
198 CellData& cellData = problem_.variables().cellData(eIdxGlobal);
200 const typename Element::Geometry& geometry = element.geometry();
203 const auto refElement = referenceElement(geometry);
205 const int numberOfFaces=refElement.size(1);
206 std::vector<Scalar> fluxW(numberOfFaces,0);
207 std::vector<Scalar> fluxNw(numberOfFaces,0);
210 for (
const auto& intersection : intersections(problem_.gridView(), element))
212 int isIndex = intersection.indexInInside();
214 fluxW[isIndex] += intersection.geometry().volume()
215 * (intersection.centerUnitOuterNormal() * cellData.fluxData().velocity(wPhaseIdx, isIndex));
216 fluxNw[isIndex] += intersection.geometry().volume()
217 * (intersection.centerUnitOuterNormal() * cellData.fluxData().velocity(nPhaseIdx, isIndex));
222 Dune::FieldVector<Scalar, dim> refVelocity;
224 if (refElement.type().isSimplex()) {
225 for (
int dimIdx = 0; dimIdx < dim; dimIdx++)
227 refVelocity[dimIdx] = -fluxW[dim - 1 - dimIdx];
228 for (
int fIdx = 0; fIdx < dim + 1; fIdx++)
230 refVelocity[dimIdx] += fluxW[fIdx]/(dim + 1);
235 else if (refElement.type().isCube()){
236 for (
int i = 0; i < dim; i++)
237 refVelocity[i] = 0.5 * (fluxW[2*i + 1] - fluxW[2*i]);
241 DUNE_THROW(Dune::NotImplemented,
"velocity output for prism/pyramid not implemented");
244 const Dune::FieldVector<Scalar, dim> localPos =
245 refElement.position(0, 0);
248 const JacobianTransposed jacobianT =
249 geometry.jacobianTransposed(localPos);
252 Dune::FieldVector < Scalar, dim > elementVelocity(0);
253 jacobianT.umtv(refVelocity, elementVelocity);
254 elementVelocity /= geometry.integrationElement(localPos);
256 velocity[eIdxGlobal] = elementVelocity;
261 if (refElement.type().isSimplex()) {
262 for (
int dimIdx = 0; dimIdx < dim; dimIdx++)
264 refVelocity[dimIdx] = -fluxNw[dim - 1 - dimIdx];
265 for (
int fIdx = 0; fIdx < dim + 1; fIdx++)
267 refVelocity[dimIdx] += fluxNw[fIdx]/(dim + 1);
272 else if (refElement.type().isCube()){
273 for (
int i = 0; i < dim; i++)
274 refVelocity[i] = 0.5 * (fluxNw[2*i + 1] - fluxNw[2*i]);
278 DUNE_THROW(Dune::NotImplemented,
"velocity output for prism/pyramid not implemented");
283 jacobianT.umtv(refVelocity, elementVelocity);
284 elementVelocity /= geometry.integrationElement(localPos);
286 velocitySecondPhase[eIdxGlobal] = elementVelocity;
290 if (velocityType_ == vt)
292 writer.attachCellData(velocity,
"total velocity", dim);
296 writer.attachCellData(velocity,
"wetting-velocity", dim);
297 writer.attachCellData(velocitySecondPhase,
"nonwetting-velocity", dim);
306 const GravityVector& gravity_;
307 Scalar density_[numPhases];
308 Scalar viscosity_[numPhases];
313 static const int velocityType_ = getPropValue<TypeTag, Properties::VelocityFormulation>();
314 static const bool compressibility_ = getPropValue<TypeTag, Properties::EnableCompressibility>();
316 static const int pressureType_ = getPropValue<TypeTag, Properties::PressureFormulation>();
318 static const int saturationType_ = getPropValue<TypeTag, Properties::SaturationFormulation>();
329template<
class TypeTag>
332 auto elementI = intersection.inside();
333 auto elementJ = intersection.outside();
335 int eIdxGlobalJ = problem_.variables().index(elementJ);
337 CellData& cellDataJ = problem_.variables().cellData(eIdxGlobalJ);
340 const GlobalPosition& globalPosI = (elementI).geometry().center();
341 const GlobalPosition& globalPosJ = (elementJ).geometry().center();
344 Scalar lambdaWI = cellData.mobility(wPhaseIdx);
345 Scalar lambdaNwI = cellData.mobility(nPhaseIdx);
346 Scalar lambdaWJ = cellDataJ.mobility(wPhaseIdx);
347 Scalar lambdaNwJ = cellDataJ.mobility(nPhaseIdx);
350 Scalar pcI = cellData.capillaryPressure();
351 Scalar pcJ = cellDataJ.capillaryPressure();
354 int isIndexI = intersection.indexInInside();
355 int isIndexJ = intersection.indexInOutside();
358 const Dune::FieldVector<Scalar, dim>& unitOuterNormal = intersection.centerUnitOuterNormal();
361 GlobalPosition distVec = globalPosJ - globalPosI;
364 Scalar dist = distVec.two_norm();
367 DimMatrix meanPermeability(0);
369 problem_.spatialParams().meanK(meanPermeability, problem_.spatialParams().intrinsicPermeability(elementI),
370 problem_.spatialParams().intrinsicPermeability(elementJ));
376 Scalar potentialDiffW = cellData.potential(wPhaseIdx) - cellDataJ.potential(wPhaseIdx);
377 Scalar potentialDiffNw = cellData.potential(nPhaseIdx) - cellDataJ.potential(nPhaseIdx);
379 if (compressibility_)
381 density_[wPhaseIdx] = (potentialDiffW > 0.) ? cellData.density(wPhaseIdx) : cellDataJ.density(wPhaseIdx);
382 density_[nPhaseIdx] = (potentialDiffNw > 0.) ? cellData.density(nPhaseIdx) : cellDataJ.density(nPhaseIdx);
384 density_[wPhaseIdx] =
385 (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffW, 0.0, 1.0e-30)) ? 0.5 * (cellData.density(wPhaseIdx) + cellDataJ.density(wPhaseIdx)) :
387 density_[nPhaseIdx] =
388 (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffNw, 0.0, 1.0e-30)) ? 0.5 * (cellData.density(nPhaseIdx) + cellDataJ.density(nPhaseIdx)) :
391 potentialDiffW = (cellData.pressure(wPhaseIdx) - cellDataJ.pressure(wPhaseIdx));
392 potentialDiffNw = (cellData.pressure(nPhaseIdx) - cellDataJ.pressure(nPhaseIdx));
394 potentialDiffW += density_[wPhaseIdx] * (distVec * gravity_);
395 potentialDiffNw += density_[nPhaseIdx] * (distVec * gravity_);
399 cellData.fluxData().setUpwindPotential(wPhaseIdx, isIndexI, potentialDiffW);
400 cellData.fluxData().setUpwindPotential(nPhaseIdx, isIndexI, potentialDiffNw);
402 cellDataJ.fluxData().setUpwindPotential(wPhaseIdx, isIndexJ, -potentialDiffW);
403 cellDataJ.fluxData().setUpwindPotential(nPhaseIdx, isIndexJ, -potentialDiffNw);
406 Scalar lambdaW = (potentialDiffW > 0.) ? lambdaWI : lambdaWJ;
407 lambdaW = (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffW, 0.0, 1.0e-30)) ? 0.5 * (lambdaWI + lambdaWJ) : lambdaW;
408 Scalar lambdaNw = (potentialDiffNw > 0.) ? lambdaNwI : lambdaNwJ;
409 lambdaNw = (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffNw, 0.0, 1.0e-30)) ? 0.5 * (lambdaNwI + lambdaNwJ) : lambdaNw;
411 if (compressibility_)
413 density_[wPhaseIdx] = (potentialDiffW > 0.) ? cellData.density(wPhaseIdx) : cellDataJ.density(wPhaseIdx);
414 density_[nPhaseIdx] = (potentialDiffNw > 0.) ? cellData.density(nPhaseIdx) : cellDataJ.density(nPhaseIdx);
416 density_[wPhaseIdx] =
417 (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffW, 0.0, 1.0e-30)) ? 0.5 * (cellData.density(wPhaseIdx) + cellDataJ.density(wPhaseIdx)) :
419 density_[nPhaseIdx] =
420 (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffNw, 0.0, 1.0e-30)) ? 0.5 * (cellData.density(nPhaseIdx) + cellDataJ.density(nPhaseIdx)) :
427 Dune::FieldVector<Scalar, dimWorld> velocityW(unitOuterNormal);
428 Dune::FieldVector<Scalar, dimWorld> velocityNw(unitOuterNormal);
432 Scalar areaScaling = (unitOuterNormal * distVec);
435 Scalar gravityTermW = (gravity_ * distVec) * density_[wPhaseIdx] * areaScaling;
436 Scalar gravityTermNw = (gravity_ * distVec) * density_[nPhaseIdx] * areaScaling;
439 switch (pressureType_)
443 velocityW *= lambdaW * scalarPerm
444 * ((cellData.pressure(wPhaseIdx) - cellDataJ.pressure(wPhaseIdx)) / dist + gravityTermW);
445 velocityNw *= lambdaNw * scalarPerm
446 * ((cellData.pressure(wPhaseIdx) - cellDataJ.pressure(wPhaseIdx)) / dist + gravityTermNw)
447 + 0.5 * (lambdaNwI + lambdaNwJ) * scalarPerm * (pcI - pcJ) / dist;
452 velocityW *= lambdaW * scalarPerm
453 * ((cellData.pressure(nPhaseIdx) - cellDataJ.pressure(nPhaseIdx)) / dist + gravityTermW)
454 - 0.5 * (lambdaWI + lambdaWJ) * scalarPerm * (pcI - pcJ) / dist;
455 velocityNw *= lambdaNw * scalarPerm
456 * ((cellData.pressure(nPhaseIdx) - cellDataJ.pressure(nPhaseIdx)) / dist + gravityTermNw);
461 velocityW *= (lambdaW + lambdaNw) * scalarPerm * (cellData.globalPressure() - cellDataJ.globalPressure()) / dist
462 + scalarPerm * (lambdaW * gravityTermW + lambdaNw * gravityTermNw);
469 cellData.fluxData().setVelocity(wPhaseIdx, isIndexI, velocityW);
470 cellData.fluxData().setVelocity(nPhaseIdx, isIndexI, velocityNw);
471 cellData.fluxData().setVelocityMarker(isIndexI);
473 cellDataJ.fluxData().setVelocity(wPhaseIdx, isIndexJ, velocityW);
474 cellDataJ.fluxData().setVelocity(nPhaseIdx, isIndexJ, velocityNw);
475 cellDataJ.fluxData().setVelocityMarker(isIndexJ);
489template<
class TypeTag>
492 auto element = intersection.inside();
495 int isIndex = intersection.indexInInside();
498 const Dune::FieldVector<Scalar, dim>& unitOuterNormal = intersection.centerUnitOuterNormal();
500 BoundaryTypes bcType;
502 problem_.boundaryTypes(bcType, intersection);
503 PrimaryVariables boundValues(0.0);
505 if (bcType.isDirichlet(eqIdxPress))
507 problem_.dirichlet(boundValues, intersection);
510 const GlobalPosition& globalPosI = element.geometry().center();
513 const GlobalPosition& globalPosJ = intersection.geometry().center();
516 Scalar lambdaWI = cellData.mobility(wPhaseIdx);
517 Scalar lambdaNwI = cellData.mobility(nPhaseIdx);
518 Scalar fractionalWI = cellData.fracFlowFunc(wPhaseIdx);
519 Scalar fractionalNwI = cellData.fracFlowFunc(nPhaseIdx);
522 Scalar pcI = cellData.capillaryPressure();
525 GlobalPosition distVec = globalPosJ - globalPosI;
528 Scalar dist = distVec.two_norm();
532 DimMatrix meanPermeability(0);
534 problem_.spatialParams().meanK(meanPermeability, problem_.spatialParams().intrinsicPermeability(element));
542 if (bcType.isDirichlet(eqIdxSat))
544 switch (saturationType_)
548 satW = boundValues[saturationIdx];
549 satNw = 1 - boundValues[saturationIdx];
554 satW = 1 - boundValues[saturationIdx];
555 satNw = boundValues[saturationIdx];
562 satW = cellData.saturation(wPhaseIdx);
563 satNw = cellData.saturation(nPhaseIdx);
566 const Scalar pressBound = boundValues[pressureIdx];
568 const auto fluidMatrixInteraction = problem_.spatialParams().fluidMatrixInteractionAtPos(element.geometry().center());
569 const Scalar pcBound = fluidMatrixInteraction.pc(satW);
572 Scalar pressWBound = 0;
573 Scalar pressNwBound = 0;
574 if (pressureType_ == pw)
576 pressWBound = pressBound;
577 pressNwBound = pressBound + pcBound;
579 else if (pressureType_ == pn)
581 pressWBound = pressBound - pcBound;
582 pressNwBound = pressBound;
586 const Scalar
temperature = problem_.temperature(element);
588 Scalar densityWBound = density_[wPhaseIdx];
589 Scalar densityNwBound = density_[nPhaseIdx];
590 Scalar viscosityWBound = viscosity_[wPhaseIdx];
591 Scalar viscosityNwBound = viscosity_[nPhaseIdx];
593 if (compressibility_)
595 FluidState fluidState;
596 fluidState.setSaturation(wPhaseIdx, satW);
597 fluidState.setSaturation(nPhaseIdx, satNw);
599 fluidState.setPressure(wPhaseIdx, pressWBound);
600 fluidState.setPressure(nPhaseIdx, pressNwBound);
608 Scalar lambdaWBound = fluidMatrixInteraction.krw(satW)
610 Scalar lambdaNwBound = fluidMatrixInteraction.krn(satW)
613 Scalar potentialDiffW = cellData.fluxData().upwindPotential(wPhaseIdx, isIndex);
614 Scalar potentialDiffNw = cellData.fluxData().upwindPotential(nPhaseIdx, isIndex);
616 if (compressibility_)
618 density_[wPhaseIdx] = (potentialDiffW > 0.) ? cellData.density(wPhaseIdx) : densityWBound;
619 density_[wPhaseIdx] =
620 (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffW, 0.0, 1.0e-30)) ? 0.5 * (cellData.density(wPhaseIdx) + densityWBound) : density_[wPhaseIdx];
621 density_[nPhaseIdx] = (potentialDiffNw > 0.) ? cellData.density(nPhaseIdx) : densityNwBound;
622 density_[nPhaseIdx] =
623 (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffNw, 0.0, 1.0e-30)) ? 0.5 * (cellData.density(nPhaseIdx) + densityNwBound) : density_[nPhaseIdx];
627 if (pressureType_ == pGlobal)
629 potentialDiffW = (cellData.globalPressure() - pressBound - fractionalNwI * (pcI - pcBound));
630 potentialDiffNw = (cellData.globalPressure() - pressBound + fractionalWI * (pcI - pcBound));
634 potentialDiffW = (cellData.pressure(wPhaseIdx) - pressWBound);
635 potentialDiffNw = (cellData.pressure(nPhaseIdx) - pressNwBound);
638 potentialDiffW += density_[wPhaseIdx] * (distVec * gravity_);
639 potentialDiffNw += density_[nPhaseIdx] * (distVec * gravity_);
642 cellData.fluxData().setUpwindPotential(wPhaseIdx, isIndex, potentialDiffW);
643 cellData.fluxData().setUpwindPotential(nPhaseIdx, isIndex, potentialDiffNw);
646 Scalar lambdaW = (potentialDiffW > 0.) ? lambdaWI : lambdaWBound;
647 lambdaW = (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffW, 0.0, 1.0e-30)) ? 0.5 * (lambdaWI + lambdaWBound) : lambdaW;
648 Scalar lambdaNw = (potentialDiffNw > 0.) ? lambdaNwI : lambdaNwBound;
649 lambdaNw = (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffNw, 0.0, 1.0e-30)) ? 0.5 * (lambdaNwI + lambdaNwBound) : lambdaNw;
651 if (compressibility_)
653 density_[wPhaseIdx] = (potentialDiffW > 0.) ? cellData.density(wPhaseIdx) : densityWBound;
654 density_[wPhaseIdx] =
655 (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffW, 0.0, 1.0e-30)) ? 0.5 * (cellData.density(wPhaseIdx) + densityWBound) : density_[wPhaseIdx];
656 density_[nPhaseIdx] = (potentialDiffNw > 0.) ? cellData.density(nPhaseIdx) : densityNwBound;
657 density_[nPhaseIdx] =
658 (Dune::FloatCmp::eq<Scalar, Dune::FloatCmp::absolute>(potentialDiffNw, 0.0, 1.0e-30)) ? 0.5 * (cellData.density(nPhaseIdx) + densityNwBound) : density_[nPhaseIdx];
664 Dune::FieldVector<Scalar, dimWorld> velocityW(unitOuterNormal);
665 Dune::FieldVector<Scalar, dimWorld> velocityNw(unitOuterNormal);
669 Scalar areaScaling = (unitOuterNormal * distVec);
672 Scalar gravityTermW = (gravity_ * distVec) * density_[wPhaseIdx] * areaScaling;
673 Scalar gravityTermNw = (gravity_ * distVec) * density_[nPhaseIdx] * areaScaling;
676 switch (pressureType_)
680 velocityW *= lambdaW * scalarPerm * ((cellData.pressure(wPhaseIdx) - pressBound) / dist + gravityTermW);
681 velocityNw *= lambdaNw * scalarPerm * ((cellData.pressure(wPhaseIdx) - pressBound) / dist + gravityTermNw)
682 + 0.5 * (lambdaNwI + lambdaNwBound) * scalarPerm * (pcI - pcBound) / dist;
687 velocityW *= lambdaW * scalarPerm * ((cellData.pressure(nPhaseIdx) - pressBound) / dist + gravityTermW)
688 - 0.5 * (lambdaWI + lambdaWBound) * scalarPerm * (pcI - pcBound) / dist;
689 velocityNw *= lambdaNw * scalarPerm * ((cellData.pressure(nPhaseIdx) - pressBound) / dist + gravityTermNw);
694 velocityW *= (lambdaW + lambdaNw) * scalarPerm * (cellData.globalPressure() - pressBound) / dist
695 + scalarPerm * (lambdaW * gravityTermW + lambdaNw * gravityTermNw);
702 cellData.fluxData().setVelocity(wPhaseIdx, isIndex, velocityW);
703 cellData.fluxData().setVelocity(nPhaseIdx, isIndex, velocityNw);
704 cellData.fluxData().setVelocityMarker(isIndex);
708 else if (bcType.isNeumann(eqIdxPress))
710 problem_.neumann(boundValues, intersection);
712 Dune::FieldVector<Scalar, dimWorld> velocityW(unitOuterNormal);
713 Dune::FieldVector<Scalar, dimWorld> velocityNw(unitOuterNormal);
715 velocityW *= boundValues[wPhaseIdx];
716 velocityNw *= boundValues[nPhaseIdx];
718 if (!compressibility_)
720 velocityW /= density_[wPhaseIdx];
721 velocityNw /= density_[nPhaseIdx];
725 cellData.fluxData().setUpwindPotential(wPhaseIdx, isIndex, boundValues[wPhaseIdx]);
726 cellData.fluxData().setUpwindPotential(nPhaseIdx, isIndex, boundValues[nPhaseIdx]);
728 cellData.fluxData().setVelocity(wPhaseIdx, isIndex, velocityW);
729 cellData.fluxData().setVelocity(nPhaseIdx, isIndex, velocityNw);
730 cellData.fluxData().setVelocityMarker(isIndex);
734 DUNE_THROW(Dune::NotImplemented,
"No valid boundary condition type defined for pressure equation!");
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type GetProp
get the type of a property
Definition: propertysystem.hh:141
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property
Definition: propertysystem.hh:150
std::string temperature() noexcept
I/O name of temperature for equilibrium models.
Definition: name.hh:51
std::string viscosity(int phaseIdx) noexcept
I/O name of viscosity for multiphase systems.
Definition: name.hh:74
std::string permeability() noexcept
I/O name of permeability.
Definition: name.hh:143
std::string density(int phaseIdx) noexcept
I/O name of density for multiphase systems.
Definition: name.hh:65
Determines the velocity from a finite volume solution of the pressure equation of a sequential model ...
Definition: 2p/sequential/diffusion/cellcentered/velocity.hh:61
void addOutputVtkFields(MultiWriter &writer)
Adds velocity output to the output file.
Definition: 2p/sequential/diffusion/cellcentered/velocity.hh:183
void calculateVelocity(const Intersection &, CellData &)
Calculates the velocity at a cell-cell interface.
Definition: 2p/sequential/diffusion/cellcentered/velocity.hh:330
bool calculateVelocityInTransport()
Indicates if velocity is reconstructed in the pressure step or in the transport step.
Definition: 2p/sequential/diffusion/cellcentered/velocity.hh:169
FVVelocity2P(Problem &problem)
Constructs a FVVelocity2P object.
Definition: 2p/sequential/diffusion/cellcentered/velocity.hh:118
void initialize()
For initialization.
Definition: 2p/sequential/diffusion/cellcentered/velocity.hh:140
void calculateVelocityOnBoundary(const Intersection &, CellData &)
Calculates the velocity at a boundary.
Definition: 2p/sequential/diffusion/cellcentered/velocity.hh:490
Specifies the properties for immiscible 2p diffusion/pressure models.