3.4
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
geometryintersection.hh
Go to the documentation of this file.
1/*****************************************************************************
2 * See the file COPYING for full copying permissions. *
3 * *
4 * This program is free software: you can redistribute it and/or modify *
5 * it under the terms of the GNU General Public License as published by *
6 * the Free Software Foundation, either version 3 of the License, or *
7 * (at your option) any later version. *
8 * *
9 * This program is distributed in the hope that it will be useful, *
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
12 * GNU General Public License for more details. *
13 * *
14 * You should have received a copy of the GNU General Public License *
15 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
16 *****************************************************************************/
23#ifndef DUMUX_GEOMETRY_INTERSECTION_HH
24#define DUMUX_GEOMETRY_INTERSECTION_HH
25
26#include <tuple>
27
28#include <dune/common/exceptions.hh>
29#include <dune/common/promotiontraits.hh>
30#include <dune/geometry/multilineargeometry.hh>
31
32#include <dumux/common/math.hh>
36
37namespace Dumux {
38namespace IntersectionPolicy {
39
41template<class ct, int dw>
43{
44 using ctype = ct;
45 using Point = Dune::FieldVector<ctype, dw>;
46
47 static constexpr int dimWorld = dw;
48 static constexpr int dimIntersection = 0;
50};
51
53template<class ct, int dw>
55{
56 using ctype = ct;
57 using Point = Dune::FieldVector<ctype, dw>;
58 using Segment = std::array<Point, 2>;
59
60 static constexpr int dimWorld = dw;
61 static constexpr int dimIntersection = 1;
63};
64
66template<class ct, int dw>
68{
69 using ctype = ct;
70 using Point = Dune::FieldVector<ctype, dw>;
71 using Polygon = std::vector<Point>;
72
73 static constexpr int dimWorld = dw;
74 static constexpr int dimIntersection = 2;
76};
77
79template<class ct, int dw>
81{
82 using ctype = ct;
83 using Point = Dune::FieldVector<ctype, dw>;
84 using Polyhedron = std::vector<Point>;
85
86 static constexpr int dimWorld = dw;
87 static constexpr int dimIntersection = 3;
89};
90
92template<class Geometry1, class Geometry2>
94{
95 static constexpr int dimworld = Geometry1::coorddimension;
96 static constexpr int isDim = std::min( int(Geometry1::mydimension), int(Geometry2::mydimension) );
97 static_assert(dimworld == int(Geometry2::coorddimension),
98 "Geometries must have the same coordinate dimension!");
99 static_assert(int(Geometry1::mydimension) <= 3 && int(Geometry2::mydimension) <= 3,
100 "Geometries must have dimension 3 or less.");
101 using ctype = typename Dune::PromotionTraits<typename Geometry1::ctype, typename Geometry2::ctype>::PromotedType;
102
103 using DefaultPolicies = std::tuple<PointPolicy<ctype, dimworld>,
107public:
108 using type = std::tuple_element_t<isDim, DefaultPolicies>;
109};
110
112template<class Geometry1, class Geometry2>
114
115} // end namespace IntersectionPolicy
116
117namespace Detail {
118
132template< class Geo1, class Geo2, class ctype,
133 class GetFacetCornerIndices, class ComputeNormalFunction >
134bool computeSegmentIntersection(const Geo1& geo1, const Geo2& geo2, ctype baseEps,
135 ctype& tfirst, ctype& tlast,
136 const GetFacetCornerIndices& getFacetCornerIndices,
137 const ComputeNormalFunction& computeNormal)
138{
139 static_assert(int(Geo2::mydimension) == 1, "Geometry2 must be a segment");
140 static_assert(int(Geo1::mydimension) > int(Geo2::mydimension),
141 "Dimension of Geometry1 must be higher than that of Geometry2");
142
143 const auto a = geo2.corner(0);
144 const auto b = geo2.corner(1);
145 const auto d = b - a;
146
147 // The initial interval is the whole segment.
148 // Afterwards we start clipping the interval
149 // at the intersections with the facets of geo1
150 tfirst = 0.0;
151 tlast = 1.0;
152
153 const auto facets = getFacetCornerIndices(geo1);
154 for (const auto& f : facets)
155 {
156 const auto n = computeNormal(f);
157
158 const auto c0 = geo1.corner(f[0]);
159 const ctype denom = n*d;
160 const ctype dist = n*(a-c0);
161
162 // use first edge of the facet to scale eps
163 const auto edge1 = geo1.corner(f[1]) - geo1.corner(f[0]);
164 const ctype eps = baseEps*edge1.two_norm();
165
166 // if denominator is zero the segment in parallel to the edge.
167 // If the distance is positive there is no intersection
168 using std::abs;
169 if (abs(denom) < eps)
170 {
171 if (dist > eps)
172 return false;
173 }
174 else // not parallel: compute line-line intersection
175 {
176 const ctype t = -dist / denom;
177 // if entering half space cut tfirst if t is larger
178 using std::signbit;
179 if (signbit(denom))
180 {
181 if (t > tfirst)
182 tfirst = t;
183 }
184 // if exiting half space cut tlast if t is smaller
185 else
186 {
187 if (t < tlast)
188 tlast = t;
189 }
190 // there is no intersection of the interval is empty
191 // use unscaled epsilon since t is in local coordinates
192 if (tfirst > tlast - baseEps)
193 return false;
194 }
195 }
196
197 // If we made it until here an intersection exists.
198 return true;
199}
200
201} // end namespace Detail
202
209template
210<class Geometry1, class Geometry2,
211 class Policy = IntersectionPolicy::DefaultPolicy<Geometry1, Geometry2>,
212 int dimworld = Geometry1::coorddimension,
213 int dim1 = Geometry1::mydimension,
214 int dim2 = Geometry2::mydimension>
216{
217 static constexpr int dimWorld = Policy::dimWorld;
218
219public:
220 using ctype = typename Policy::ctype;
221 using Point = typename Policy::Point;
222 using Intersection = typename Policy::Intersection;
223
225 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
226 {
227 static_assert(dimworld == Geometry2::coorddimension, "Can only intersect geometries of same coordinate dimension");
228 DUNE_THROW(Dune::NotImplemented, "Geometry intersection detection with intersection computation not implemented for dimworld = "
229 << dimworld << ", dim1 = " << dim1 << ", dim2 = " << dim2);
230 }
231};
232
237template <class Geometry1, class Geometry2, class Policy>
238class GeometryIntersection<Geometry1, Geometry2, Policy, 2, 1, 1>
239{
240 enum { dimworld = 2 };
241 enum { dim1 = 1 };
242 enum { dim2 = 1 };
243
244 // base epsilon for floating point comparisons
245 static constexpr typename Policy::ctype eps_ = 1.5e-7;
246
247public:
248 using ctype = typename Policy::ctype;
249 using Point = typename Policy::Point;
250 using Intersection = typename Policy::Intersection;
251
258 template<class P = Policy, std::enable_if_t<P::dimIntersection == 0, int> = 0>
259 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
260 {
261 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
262
263 const auto v1 = geo1.corner(1) - geo1.corner(0);
264 const auto v2 = geo2.corner(1) - geo2.corner(0);
265 const auto ac = geo2.corner(0) - geo1.corner(0);
266
267 auto n2 = Point({-1.0*v2[1], v2[0]});
268 n2 /= n2.two_norm();
269
270 // compute distance of first corner on geo2 to line1
271 const auto dist12 = n2*ac;
272
273 // first check parallel segments
274 using std::abs;
275 using std::sqrt;
276
277 const auto v1Norm2 = v1.two_norm2();
278 const auto eps = eps_*sqrt(v1Norm2);
279 const auto eps2 = eps_*v1Norm2;
280
281 const auto sp = n2*v1;
282 if (abs(sp) < eps)
283 {
284 if (abs(dist12) > eps)
285 return false;
286
287 // point intersection can only be one of the corners
288 if ( (v1*v2) < 0.0 )
289 {
290 if ( ac.two_norm2() < eps2 )
291 { intersection = geo2.corner(0); return true; }
292
293 if ( (geo2.corner(1) - geo1.corner(1)).two_norm2() < eps2 )
294 { intersection = geo2.corner(1); return true; }
295 }
296 else
297 {
298 if ( (geo2.corner(1) - geo1.corner(0)).two_norm2() < eps2 )
299 { intersection = geo2.corner(1); return true; }
300
301 if ( (geo2.corner(0) - geo1.corner(1)).two_norm2() < eps2 )
302 { intersection = geo2.corner(0); return true; }
303 }
304
305 // no intersection
306 return false;
307 }
308
309 // intersection point on v1 in local coords
310 const auto t1 = dist12 / sp;
311
312 // check if the local coords are valid
313 if (t1 < -1.0*eps_ || t1 > 1.0 + eps_)
314 return false;
315
316 // compute global coordinates
317 auto isPoint = geo1.global(t1);
318
319 // check if point is in bounding box of v2
320 const auto c = geo2.corner(0);
321 const auto d = geo2.corner(1);
322
323 using std::min; using std::max;
324 std::array<ctype, 4> bBox({ min(c[0], d[0]), min(c[1], d[1]), max(c[0], d[0]), max(c[1], d[1]) });
325
326 if ( intersectsPointBoundingBox(isPoint, bBox.data()) )
327 {
328 intersection = std::move(isPoint);
329 return true;
330 }
331
332 return false;
333 }
334
341 template<class P = Policy, std::enable_if_t<P::dimIntersection == 1, int> = 0>
342 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
343 {
344 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
345
346 const auto& a = geo1.corner(0);
347 const auto& b = geo1.corner(1);
348 const auto ab = b - a;
349
350 const auto& p = geo2.corner(0);
351 const auto& q = geo2.corner(1);
352 const auto pq = q - p;
353 Dune::FieldVector<ctype, dimworld> n2{-pq[1], pq[0]};
354
355 using std::max;
356 const auto abNorm2 = ab.two_norm2();
357 const auto pqNorm2 = pq.two_norm2();
358 const auto eps2 = eps_*max(abNorm2, pqNorm2);
359
360 // non-parallel segments do not intersect in a segment.
361 using std::abs;
362 if (abs(n2*ab) > eps2)
363 return false;
364
365 // check if the segments lie on the same line
366 const auto ap = p - a;
367 if (abs(ap*n2) > eps2)
368 return false;
369
370 // compute scaled local coordinates of corner 1/2 of segment2 on segment1
371 auto t1 = ab*ap;
372 auto t2 = ab*(q - a);
373
374 using std::swap;
375 if (t1 > t2)
376 swap(t1, t2);
377
378 using std::clamp;
379 t1 = clamp(t1, 0.0, abNorm2);
380 t2 = clamp(t2, 0.0, abNorm2);
381
382 if (abs(t2-t1) < eps2)
383 return false;
384
385 intersection = Intersection({geo1.global(t1/abNorm2), geo1.global(t2/abNorm2)});
386 return true;
387 }
388};
389
394template <class Geometry1, class Geometry2, class Policy>
395class GeometryIntersection<Geometry1, Geometry2, Policy, 2, 2, 1>
396{
397 enum { dimworld = 2 };
398 enum { dim1 = 2 };
399 enum { dim2 = 1 };
400
401public:
402 using ctype = typename Policy::ctype;
403 using Point = typename Policy::Point;
404 using Intersection = typename Policy::Intersection;
405
406private:
407 static constexpr ctype eps_ = 1.5e-7; // base epsilon for floating point comparisons
408
409public:
417 template<class P = Policy, std::enable_if_t<P::dimIntersection == 1, int> = 0>
418 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
419 {
420 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
421
422 ctype tfirst, tlast;
423 if (intersect_(geo1, geo2, tfirst, tlast))
424 {
425 // the intersection exists. Export the intersections geometry now:
426 // s(t) = a + t(b-a) in [tfirst, tlast]
427 intersection = Intersection({geo2.global(tfirst), geo2.global(tlast)});
428 return true;
429 }
430
431 return false;
432 }
433
441 template<class P = Policy, std::enable_if_t<P::dimIntersection == 0, int> = 0>
442 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, typename P::Intersection& intersection)
443 {
444 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
445
446 ctype tfirst, tlast;
447 if (!intersect_(geo1, geo2, tfirst, tlast))
448 {
449 // if start & end point are same, the intersection is a point
450 using std::abs;
451 if ( tfirst > tlast - eps_ )
452 {
453 intersection = Intersection(geo2.global(tfirst));
454 return true;
455 }
456 }
457
458 return false;
459 }
460
461private:
465 static bool intersect_(const Geometry1& geo1, const Geometry2& geo2, ctype& tfirst, ctype& tlast)
466 {
467 // lambda to obtain the facet corners on geo1
468 auto getFacetCorners = [] (const Geometry1& geo1)
469 {
470 std::vector< std::array<int, 2> > facetCorners;
471 switch (geo1.corners())
472 {
473 case 4: // quadrilateral
474 facetCorners = {{0, 2}, {3, 1}, {1, 0}, {2, 3}};
475 break;
476 case 3: // triangle
477 facetCorners = {{1, 0}, {0, 2}, {2, 1}};
478 break;
479 default:
480 DUNE_THROW(Dune::NotImplemented, "Collision of segment and geometry of type "
481 << geo1.type() << " with "<< geo1.corners() << " corners.");
482 }
483
484 return facetCorners;
485 };
486
487 // lambda to obtain the normal on a facet
488 const auto center1 = geo1.center();
489 auto computeNormal = [&geo1, &center1] (const std::array<int, 2>& facetCorners)
490 {
491 const auto c0 = geo1.corner(facetCorners[0]);
492 const auto c1 = geo1.corner(facetCorners[1]);
493 const auto edge = c1 - c0;
494
495 Dune::FieldVector<ctype, dimworld> n({-1.0*edge[1], edge[0]});
496 n /= n.two_norm();
497
498 // orientation of the element is not known
499 // make sure normal points outwards of element
500 if ( n*(center1-c0) > 0.0 )
501 n *= -1.0;
502
503 return n;
504 };
505
506 return Detail::computeSegmentIntersection(geo1, geo2, eps_, tfirst, tlast, getFacetCorners, computeNormal);
507 }
508};
509
514template <class Geometry1, class Geometry2, class Policy>
515class GeometryIntersection<Geometry1, Geometry2, Policy, 2, 1, 2>
516: public GeometryIntersection<Geometry2, Geometry1, Policy, 2, 2, 1>
517{
519
520public:
528 template<class P = Policy>
529 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, typename Base::Intersection& intersection)
530 {
531 return Base::intersection(geo2, geo1, intersection);
532 }
533};
534
539template <class Geometry1, class Geometry2, class Policy>
540class GeometryIntersection<Geometry1, Geometry2, Policy, 2, 2, 2>
541{
542 enum { dimworld = 2 };
543 enum { dim1 = 2 };
544 enum { dim2 = 2 };
545
546public:
547 using ctype = typename Policy::ctype;
548 using Point = typename Policy::Point;
549 using Intersection = typename Policy::Intersection;
550
551private:
552 static constexpr ctype eps_ = 1.5e-7; // base epsilon for floating point comparisons
553
554public:
567 template<class P = Policy, std::enable_if_t<P::dimIntersection == 2, int> = 0>
568 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
569 {
570 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
571
572 // the candidate intersection points
573 std::vector<Point> points; points.reserve(6);
574
575 // add polygon1 corners that are inside polygon2
576 for (int i = 0; i < geo1.corners(); ++i)
577 if (intersectsPointGeometry(geo1.corner(i), geo2))
578 points.emplace_back(geo1.corner(i));
579
580 const auto numPoints1 = points.size();
581 if (numPoints1 != geo1.corners())
582 {
583 // add polygon2 corners that are inside polygon1
584 for (int i = 0; i < geo2.corners(); ++i)
585 if (intersectsPointGeometry(geo2.corner(i), geo1))
586 points.emplace_back(geo2.corner(i));
587
588 if (points.empty())
589 return false;
590
591 if (points.size() - numPoints1 != geo2.corners())
592 {
593 const auto refElement1 = referenceElement(geo1);
594 const auto refElement2 = referenceElement(geo2);
595
596 // add intersections of edges
597 using SegGeometry = Dune::MultiLinearGeometry<ctype, 1, dimworld>;
599 for (int i = 0; i < refElement1.size(dim1-1); ++i)
600 {
601 const auto localEdgeGeom1 = refElement1.template geometry<dim1-1>(i);
602 const auto edge1 = SegGeometry( Dune::GeometryTypes::line,
603 std::vector<Point>( {geo1.global(localEdgeGeom1.corner(0)),
604 geo1.global(localEdgeGeom1.corner(1))} ));
605
606 for (int j = 0; j < refElement2.size(dim2-1); ++j)
607 {
608 const auto localEdgeGeom2 = refElement2.template geometry<dim2-1>(j);
609 const auto edge2 = SegGeometry( Dune::GeometryTypes::line,
610 std::vector<Point>( {geo2.global(localEdgeGeom2.corner(0)),
611 geo2.global(localEdgeGeom2.corner(1))} ));
612
614 typename EdgeTest::Intersection edgeIntersection;
615 if (EdgeTest::intersection(edge1, edge2, edgeIntersection))
616 points.emplace_back(edgeIntersection);
617 }
618 }
619 }
620 }
621
622 if (points.empty())
623 return false;
624
625 // remove duplicates
626 const auto eps = (geo1.corner(0) - geo1.corner(1)).two_norm()*eps_;
627 std::sort(points.begin(), points.end(), [&eps](const auto& a, const auto& b) -> bool
628 {
629 using std::abs;
630 return (abs(a[0]-b[0]) > eps ? a[0] < b[0] : a[1] < b[1]);
631 });
632
633 auto removeIt = std::unique(points.begin(), points.end(), [&eps](const auto& a, const auto&b)
634 {
635 return (b-a).two_norm() < eps;
636 });
637
638 points.erase(removeIt, points.end());
639
640 // return false if we don't have at least three unique points
641 if (points.size() < 3)
642 return false;
643
644 // intersection polygon is convex hull of above points
645 intersection = grahamConvexHull<2>(points);
646 assert(!intersection.empty());
647 return true;
648 }
649
657 template<class P = Policy, std::enable_if_t<P::dimIntersection == 1, int> = 0>
658 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
659 {
660 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
661 DUNE_THROW(Dune::NotImplemented, "Polygon-polygon intersection detection for segment-like intersections");
662 }
663
671 template<class P = Policy, std::enable_if_t<P::dimIntersection == 0, int> = 0>
672 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
673 {
674 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
675 DUNE_THROW(Dune::NotImplemented, "Polygon-polygon intersection detection for touching points");
676 }
677};
678
683template <class Geometry1, class Geometry2, class Policy>
684class GeometryIntersection<Geometry1, Geometry2, Policy, 3, 3, 1>
685{
686 enum { dimworld = 3 };
687 enum { dim1 = 3 };
688 enum { dim2 = 1 };
689
690public:
691 using ctype = typename Policy::ctype;
692 using Point = typename Policy::Point;
693 using Intersection = typename Policy::Intersection;
694
695private:
696 static constexpr ctype eps_ = 1.5e-7; // base epsilon for floating point comparisons
697
698public:
710 template<class P = Policy, std::enable_if_t<P::dimIntersection == 1, int> = 0>
711 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
712 {
713 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
714
715 ctype tfirst, tlast;
716 if (intersect_(geo1, geo2, tfirst, tlast))
717 {
718 // Intersection exists. Export the intersections geometry now:
719 // s(t) = a + t(b-a) in [tfirst, tlast]
720 intersection = Intersection({geo2.global(tfirst), geo2.global(tlast)});
721 return true;
722 }
723
724 return false;
725 }
726
738 template<class P = Policy, std::enable_if_t<P::dimIntersection == 0, int> = 0>
739 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
740 {
741 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
742
743 ctype tfirst, tlast;
744 if (intersect_(geo1, geo2, tfirst, tlast))
745 {
746 // if start & end point are same, the intersection is a point
747 using std::abs;
748 if ( abs(tfirst - tlast) < eps_ )
749 {
750 intersection = Intersection(geo2.global(tfirst));
751 return true;
752 }
753 }
754
755 return false;
756 }
757
758private:
762 static bool intersect_(const Geometry1& geo1, const Geometry2& geo2, ctype& tfirst, ctype& tlast)
763 {
764 // lambda to obtain facet corners on geo1
765 auto getFacetCorners = [] (const Geometry1& geo1)
766 {
767 std::vector< std::vector<int> > facetCorners;
768 // sort facet corner so that normal n = (p1-p0)x(p2-p0) always points outwards
769 switch (geo1.corners())
770 {
771 // todo compute intersection geometries
772 case 8: // hexahedron
773 facetCorners = {{2, 0, 6, 4}, {1, 3, 5, 7}, {0, 1, 4, 5},
774 {3, 2, 7, 6}, {1, 0, 3, 2}, {4, 5, 6, 7}};
775 break;
776 case 6: // prism
777 facetCorners = {{0, 2, 1}, {3, 4, 5}, {0, 1, 3, 4}, {0, 3, 2, 5}, {1, 2, 4, 5}};
778 break;
779 case 5: // pyramid
780 facetCorners = {{0, 2, 1, 3}, {0, 1, 4}, {1, 3, 4}, {2, 4, 3}, {0, 4, 2}};
781 break;
782 case 4: // tetrahedron
783 facetCorners = {{1, 0, 2}, {0, 1, 3}, {0, 3, 2}, {1, 2, 3}};
784 break;
785 default:
786 DUNE_THROW(Dune::NotImplemented, "Collision of segment and geometry of type "
787 << geo1.type() << ", "<< geo1.corners() << " corners.");
788 }
789
790 return facetCorners;
791 };
792
793 // lambda to obtain the normal on a facet
794 auto computeNormal = [&geo1] (const std::vector<int>& facetCorners)
795 {
796 const auto v0 = geo1.corner(facetCorners[1]) - geo1.corner(facetCorners[0]);
797 const auto v1 = geo1.corner(facetCorners[2]) - geo1.corner(facetCorners[0]);
798
799 auto n = crossProduct(v0, v1);
800 n /= n.two_norm();
801
802 return n;
803 };
804
805 return Detail::computeSegmentIntersection(geo1, geo2, eps_, tfirst, tlast, getFacetCorners, computeNormal);
806 }
807};
808
813template <class Geometry1, class Geometry2, class Policy>
814class GeometryIntersection<Geometry1, Geometry2, Policy, 3, 1, 3>
815: public GeometryIntersection<Geometry2, Geometry1, Policy, 3, 3, 1>
816{
818public:
826 template<class P = Policy>
827 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, typename Base::Intersection& intersection)
828 {
829 return Base::intersection(geo2, geo1, intersection);
830 }
831};
832
837template <class Geometry1, class Geometry2, class Policy>
838class GeometryIntersection<Geometry1, Geometry2, Policy, 3, 3, 2>
839{
840 enum { dimworld = 3 };
841 enum { dim1 = 3 };
842 enum { dim2 = 2 };
843
844public:
845 using ctype = typename Policy::ctype;
846 using Point = typename Policy::Point;
847 using Intersection = typename Policy::Intersection;
848
849private:
850 static constexpr ctype eps_ = 1.5e-7; // base epsilon for floating point comparisons
851
852public:
867 template<class P = Policy, std::enable_if_t<P::dimIntersection == 2, int> = 0>
868 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
869 {
870 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
871
872 // the candidate intersection points
873 std::vector<Point> points; points.reserve(10);
874
875 // add 3d geometry corners that are inside the 2d geometry
876 for (int i = 0; i < geo1.corners(); ++i)
877 if (intersectsPointGeometry(geo1.corner(i), geo2))
878 points.emplace_back(geo1.corner(i));
879
880 // add 2d geometry corners that are inside the 3d geometry
881 for (int i = 0; i < geo2.corners(); ++i)
882 if (intersectsPointGeometry(geo2.corner(i), geo1))
883 points.emplace_back(geo2.corner(i));
884
885 // get some geometry types
886 using PolyhedronFaceGeometry = Dune::MultiLinearGeometry<ctype, 2, dimworld>;
887 using SegGeometry = Dune::MultiLinearGeometry<ctype, 1, dimworld>;
888
889 const auto refElement1 = referenceElement(geo1);
890 const auto refElement2 = referenceElement(geo2);
891
892 // intersection policy for point-like intersections (used later)
894
895 // add intersection points of all polyhedron edges (codim dim-1) with the polygon
896 for (int i = 0; i < refElement1.size(dim1-1); ++i)
897 {
898 const auto localEdgeGeom = refElement1.template geometry<dim1-1>(i);
899 const auto p = geo1.global(localEdgeGeom.corner(0));
900 const auto q = geo1.global(localEdgeGeom.corner(1));
901 const auto segGeo = SegGeometry(Dune::GeometryTypes::line, std::vector<Point>{p, q});
902
904 typename PolySegTest::Intersection polySegIntersection;
905 if (PolySegTest::intersection(geo2, segGeo, polySegIntersection))
906 points.emplace_back(polySegIntersection);
907 }
908
909 // add intersection points of all polygon faces (codim 1) with the polyhedron faces
910 for (int i = 0; i < refElement1.size(1); ++i)
911 {
912 const auto faceGeo = [&]()
913 {
914 const auto localFaceGeo = refElement1.template geometry<1>(i);
915 if (localFaceGeo.corners() == 4)
916 {
917 const auto a = geo1.global(localFaceGeo.corner(0));
918 const auto b = geo1.global(localFaceGeo.corner(1));
919 const auto c = geo1.global(localFaceGeo.corner(2));
920 const auto d = geo1.global(localFaceGeo.corner(3));
921
922 return PolyhedronFaceGeometry(Dune::GeometryTypes::cube(2), std::vector<Point>{a, b, c, d});
923 }
924 else
925 {
926 const auto a = geo1.global(localFaceGeo.corner(0));
927 const auto b = geo1.global(localFaceGeo.corner(1));
928 const auto c = geo1.global(localFaceGeo.corner(2));
929
930 return PolyhedronFaceGeometry(Dune::GeometryTypes::simplex(2), std::vector<Point>{a, b, c});
931 }
932 }();
933
934 for (int j = 0; j < refElement2.size(1); ++j)
935 {
936 const auto localEdgeGeom = refElement2.template geometry<1>(j);
937 const auto p = geo2.global(localEdgeGeom.corner(0));
938 const auto q = geo2.global(localEdgeGeom.corner(1));
939
940 const auto segGeo = SegGeometry(Dune::GeometryTypes::line, std::vector<Point>{p, q});
941
943 typename PolySegTest::Intersection polySegIntersection;
944 if (PolySegTest::intersection(faceGeo, segGeo, polySegIntersection))
945 points.emplace_back(polySegIntersection);
946 }
947 }
948
949 // return if no intersection points were found
950 if (points.empty()) return false;
951
952 // remove duplicates
953 const auto eps = (geo1.corner(0) - geo1.corner(1)).two_norm()*eps_;
954 std::sort(points.begin(), points.end(), [&eps](const auto& a, const auto& b) -> bool
955 {
956 using std::abs;
957 return (abs(a[0]-b[0]) > eps ? a[0] < b[0] : (abs(a[1]-b[1]) > eps ? a[1] < b[1] : (a[2] < b[2])));
958 });
959
960 auto removeIt = std::unique(points.begin(), points.end(), [&eps](const auto& a, const auto&b)
961 {
962 return (b-a).two_norm() < eps;
963 });
964
965 points.erase(removeIt, points.end());
966
967 // return false if we don't have more than three unique points
968 if (points.size() < 3) return false;
969
970 // intersection polygon is convex hull of above points
971 intersection = grahamConvexHull<2>(points);
972 assert(!intersection.empty());
973
974 return true;
975 }
976
991 template<class P = Policy, std::enable_if_t<P::dimIntersection != 2, int> = 0>
992 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
993 {
994 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
995 DUNE_THROW(Dune::NotImplemented, "Polyhedron-polygon intersection detection only implemented for polygon-like intersections");
996 }
997};
998
1003template <class Geometry1, class Geometry2, class Policy>
1004class GeometryIntersection<Geometry1, Geometry2, Policy, 3, 2, 3>
1005: public GeometryIntersection<Geometry2, Geometry1, Policy, 3, 3, 2>
1006{
1008public:
1016 template<class P = Policy>
1017 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, typename Base::Intersection& intersection)
1018 {
1019 return Base::intersection(geo2, geo1, intersection);
1020 }
1021};
1022
1027template <class Geometry1, class Geometry2, class Policy>
1028class GeometryIntersection<Geometry1, Geometry2, Policy, 3, 2, 1>
1029{
1030 enum { dimworld = 3 };
1031 enum { dim1 = 2 };
1032 enum { dim2 = 1 };
1033
1034public:
1035 using ctype = typename Policy::ctype;
1036 using Point = typename Policy::Point;
1037 using Intersection = typename Policy::Intersection;
1038
1039private:
1040 static constexpr ctype eps_ = 1.5e-7; // base epsilon for floating point comparisons
1041
1042public:
1052 template<class P = Policy, std::enable_if_t<P::dimIntersection == 1, int> = 0>
1053 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
1054 {
1055 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
1056
1057 ctype tfirst, tlast;
1058 if (intersect_(geo1, geo2, tfirst, tlast))
1059 {
1060 // the intersection exists. Export the intersections geometry now:
1061 // s(t) = a + t(b-a) in [tfirst, tlast]
1062 intersection = Intersection({geo2.global(tfirst), geo2.global(tlast)});
1063 return true;
1064 }
1065
1066 return false;
1067 }
1068
1078 template<class P = Policy, std::enable_if_t<P::dimIntersection == 0, int> = 0>
1079 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& is)
1080 {
1081 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
1082
1083 const auto p = geo2.corner(0);
1084 const auto q = geo2.corner(1);
1085
1086 const auto a = geo1.corner(0);
1087 const auto b = geo1.corner(1);
1088 const auto c = geo1.corner(2);
1089
1090 if (geo1.corners() == 3)
1091 return intersect_<Policy>(a, b, c, p, q, is);
1092
1093 else if (geo1.corners() == 4)
1094 {
1095 Intersection is1, is2;
1096 bool hasSegment1, hasSegment2;
1097
1098 const auto d = geo1.corner(3);
1099 const bool intersects1 = intersect_<Policy>(a, b, d, p, q, is1, hasSegment1);
1100 const bool intersects2 = intersect_<Policy>(a, d, c, p, q, is2, hasSegment2);
1101
1102 if (hasSegment1 || hasSegment2)
1103 return false;
1104
1105 if (intersects1) { is = is1; return true; }
1106 if (intersects2) { is = is2; return true; }
1107
1108 return false;
1109 }
1110
1111 else
1112 DUNE_THROW(Dune::NotImplemented, "Collision of segment and geometry of type "
1113 << geo1.type() << ", "<< geo1.corners() << " corners.");
1114 }
1115
1116private:
1120 template<class P = Policy, std::enable_if_t<P::dimIntersection == 1, int> = 0>
1121 static bool intersect_(const Geometry1& geo1, const Geometry2& geo2, ctype& tfirst, ctype& tlast)
1122 {
1123 // lambda to obtain the facet corners on geo1
1124 auto getFacetCorners = [] (const Geometry1& geo1)
1125 {
1126 std::vector< std::array<int, 2> > facetCorners;
1127 switch (geo1.corners())
1128 {
1129 case 4: // quadrilateral
1130 facetCorners = {{0, 2}, {3, 1}, {1, 0}, {2, 3}};
1131 break;
1132 case 3: // triangle
1133 facetCorners = {{1, 0}, {0, 2}, {2, 1}};
1134 break;
1135 default:
1136 DUNE_THROW(Dune::NotImplemented, "Collision of segment and geometry of type "
1137 << geo1.type() << " with "<< geo1.corners() << " corners.");
1138 }
1139
1140 return facetCorners;
1141 };
1142
1143 const auto center1 = geo1.center();
1144 const auto normal1 = crossProduct(geo1.corner(1) - geo1.corner(0),
1145 geo1.corner(2) - geo1.corner(0));
1146
1147 // lambda to obtain the normal on a facet
1148 auto computeNormal = [&center1, &normal1, &geo1] (const std::array<int, 2>& facetCorners)
1149 {
1150 const auto c0 = geo1.corner(facetCorners[0]);
1151 const auto c1 = geo1.corner(facetCorners[1]);
1152 const auto edge = c1 - c0;
1153
1154 Dune::FieldVector<ctype, dimworld> n = crossProduct(edge, normal1);
1155 n /= n.two_norm();
1156
1157 // orientation of the element is not known
1158 // make sure normal points outwards of element
1159 if ( n*(center1-c0) > 0.0 )
1160 n *= -1.0;
1161
1162 return n;
1163 };
1164
1165 return Detail::computeSegmentIntersection(geo1, geo2, eps_, tfirst, tlast, getFacetCorners, computeNormal);
1166 }
1167
1171 template<class P = Policy, std::enable_if_t<P::dimIntersection == 0, int> = 0>
1172 static bool intersect_(const Point& a, const Point& b, const Point& c,
1173 const Point& p, const Point& q,
1174 Intersection& is)
1175 {
1176 bool hasSegment;
1177 return intersect_(a, b, c, p, q, is, hasSegment);
1178 }
1179
1184 template<class P = Policy, std::enable_if_t<P::dimIntersection == 0, int> = 0>
1185 static bool intersect_(const Point& a, const Point& b, const Point& c,
1186 const Point& p, const Point& q,
1187 Intersection& is, bool& hasSegmentIs)
1188 {
1189 hasSegmentIs = false;
1190
1191 const auto ab = b - a;
1192 const auto ac = c - a;
1193 const auto qp = p - q;
1194
1195 // compute the triangle normal that defines the triangle plane
1196 const auto normal = crossProduct(ab, ac);
1197
1198 // compute the denominator
1199 // if denom is 0 the segment is parallel and we can return
1200 const auto denom = normal*qp;
1201 const auto abnorm2 = ab.two_norm2();
1202 const auto eps = eps_*abnorm2*qp.two_norm();
1203 using std::abs;
1204 if (abs(denom) < eps)
1205 {
1206 const auto pa = a - p;
1207 const auto denom2 = normal*pa;
1208 if (abs(denom2) > eps_*pa.two_norm()*abnorm2)
1209 return false;
1210
1211 // if we get here, we are in-plane. Check if a
1212 // segment-like intersection with geometry 1 exists.
1213 using SegmentPolicy = typename IntersectionPolicy::SegmentPolicy<ctype, dimworld>;
1214 using Triangle = Dune::AffineGeometry<ctype, 2, dimworld>;
1215 using Segment = Dune::AffineGeometry<ctype, 1, dimworld>;
1216 using SegmentIntersectionAlgorithm = GeometryIntersection<Triangle, Segment, SegmentPolicy>;
1217 using SegmentIntersectionType = typename SegmentIntersectionAlgorithm::Intersection;
1218 SegmentIntersectionType segmentIs;
1219
1220 Triangle triangle(Dune::GeometryTypes::simplex(2), std::array<Point, 3>({a, b, c}));
1221 Segment segment(Dune::GeometryTypes::simplex(1), std::array<Point, 2>({p, q}));
1222 if (SegmentIntersectionAlgorithm::intersection(triangle, segment, segmentIs))
1223 {
1224 hasSegmentIs = true;
1225 return false;
1226 }
1227
1228 // We are in-plane. A point-like
1229 // intersection can only be on the edges
1230 for (const auto& ip : {p, q})
1231 {
1232 if ( intersectsPointSimplex(ip, a, b)
1233 || intersectsPointSimplex(ip, b, c)
1234 || intersectsPointSimplex(ip, c, a) )
1235 {
1236 is = ip;
1237 return true;
1238 }
1239 }
1240
1241 return false;
1242 }
1243
1244 // compute intersection t value of pq with plane of triangle.
1245 // a segment intersects if and only if 0 <= t <= 1.
1246 const auto ap = p - a;
1247 const auto t = (ap*normal)/denom;
1248 if (t < 0.0 - eps_) return false;
1249 if (t > 1.0 + eps_) return false;
1250
1251 // compute the barycentric coordinates and check if the intersection point
1252 // is inside the bounds of the triangle
1253 const auto e = crossProduct(qp, ap);
1254 const auto v = (ac*e)/denom;
1255 if (v < -eps_ || v > 1.0 + eps_) return false;
1256 const auto w = -(ab*e)/denom;
1257 if (w < -eps_ || v + w > 1.0 + eps_) return false;
1258
1259 // Now we are sure there is an intersection points
1260 // Perform delayed division compute the last barycentric coordinate component
1261 const auto u = 1.0 - v - w;
1262
1263 Point ip(0.0);
1264 ip.axpy(u, a);
1265 ip.axpy(v, b);
1266 ip.axpy(w, c);
1267 is = ip;
1268 return true;
1269 }
1270};
1271
1276template <class Geometry1, class Geometry2, class Policy>
1277class GeometryIntersection<Geometry1, Geometry2, Policy, 3, 1, 2>
1278: public GeometryIntersection<Geometry2, Geometry1, Policy, 3, 2, 1>
1279{
1281public:
1289 template<class P = Policy>
1290 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, typename Base::Intersection& intersection)
1291 {
1292 return Base::intersection(geo2, geo1, intersection);
1293 }
1294};
1295
1300template <class Geometry1, class Geometry2, class Policy>
1301class GeometryIntersection<Geometry1, Geometry2, Policy, 3, 1, 1>
1302{
1303 enum { dimworld = 3 };
1304 enum { dim1 = 1 };
1305 enum { dim2 = 1 };
1306
1307public:
1308 using ctype = typename Policy::ctype;
1309 using Point = typename Policy::Point;
1310 using Intersection = typename Policy::Intersection;
1311
1312private:
1313 static constexpr ctype eps_ = 1.5e-7; // base epsilon for floating point comparisons
1314
1315public:
1323 template<class P = Policy, std::enable_if_t<P::dimIntersection == 0, int> = 0>
1324 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
1325 {
1326 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
1327 DUNE_THROW(Dune::NotImplemented, "segment-segment intersection detection for point-like intersections");
1328 }
1329
1337 template<class P = Policy, std::enable_if_t<P::dimIntersection == 1, int> = 0>
1338 static bool intersection(const Geometry1& geo1, const Geometry2& geo2, Intersection& intersection)
1339 {
1340 static_assert(int(dimworld) == int(Geometry2::coorddimension), "Can only collide geometries of same coordinate dimension");
1341
1342 const auto& a = geo1.corner(0);
1343 const auto& b = geo1.corner(1);
1344 const auto ab = b-a;
1345
1346 const auto& p = geo2.corner(0);
1347 const auto& q = geo2.corner(1);
1348 const auto pq = q-p;
1349
1350 const auto abNorm2 = ab.two_norm2();
1351 const auto pqNorm2 = pq.two_norm2();
1352
1353 using std::max;
1354 const auto eps2 = eps_*max(abNorm2, pqNorm2);
1355
1356 // if the segment are not parallel there is no segment intersection
1357 using std::abs;
1358 if (crossProduct(ab, pq).two_norm2() > eps2*eps2)
1359 return false;
1360
1361 const auto ap = (p-a);
1362 const auto aq = (q-a);
1363
1364 // points have to be colinear
1365 if (crossProduct(ap, aq).two_norm2() > eps2*eps2)
1366 return false;
1367
1368 // scaled local coordinates
1369 // we save the division for the normalization for now
1370 // and do it in the very end if we find an intersection
1371 auto tp = ap*ab;
1372 auto tq = aq*ab;
1373
1374 // make sure they are sorted
1375 using std::swap;
1376 if (tp > tq)
1377 swap(tp, tq);
1378
1379 using std::clamp;
1380 tp = clamp(tp, 0.0, abNorm2);
1381 tq = clamp(tq, 0.0, abNorm2);
1382
1383 if (abs(tp-tq) < eps2)
1384 return false;
1385
1386 intersection = Intersection({geo1.global(tp/abNorm2), geo1.global(tq/abNorm2)});
1387 return true;
1388 }
1389};
1390
1391} // end namespace Dumux
1392
1393#endif
Define some often used mathematical functions.
An axis-aligned bounding box volume hierarchy for dune grids.
A function to compute the convex hull of a point cloud and a function to triangulate the polygon area...
Detect if a point intersects a geometry.
bool intersectsPointGeometry(const Dune::FieldVector< ctype, dimworld > &point, const Geometry &g)
Find out whether a point is inside a three-dimensional geometry.
Definition: intersectspointgeometry.hh:38
Vector normal(const Vector &v)
Create a vector normal to the given one (v is expected to be non-zero)
Definition: normal.hh:36
bool intersectsPointSimplex(const Dune::FieldVector< ctype, dimworld > &point, const Dune::FieldVector< ctype, dimworld > &p0, const Dune::FieldVector< ctype, dimworld > &p1, const Dune::FieldVector< ctype, dimworld > &p2, const Dune::FieldVector< ctype, dimworld > &p3)
Find out whether a point is inside the tetrahedron (p0, p1, p2, p3) (dimworld is 3)
Definition: intersectspointsimplex.hh:36
bool computeSegmentIntersection(const Geo1 &geo1, const Geo2 &geo2, ctype baseEps, ctype &tfirst, ctype &tlast, const GetFacetCornerIndices &getFacetCornerIndices, const ComputeNormalFunction &computeNormal)
Algorithm to find segment-like intersections of a polgon/polyhedron with a segment....
Definition: geometryintersection.hh:134
Dune::FieldVector< Scalar, 3 > crossProduct(const Dune::FieldVector< Scalar, 3 > &vec1, const Dune::FieldVector< Scalar, 3 > &vec2)
Cross product of two vectors in three-dimensional Euclidean space.
Definition: math.hh:654
Definition: adapt.hh:29
bool intersectsPointBoundingBox(const Dune::FieldVector< ctype, dimworld > &point, const ctype *b)
Check whether a point is intersectin a bounding box (dimworld == 3)
Definition: boundingboxtree.hh:304
typename DefaultPolicyChooser< Geometry1, Geometry2 >::type DefaultPolicy
Helper alias to define the default intersection policy.
Definition: geometryintersection.hh:113
constexpr Line line
Definition: couplingmanager1d3d_line.hh:43
Policy structure for point-like intersections.
Definition: geometryintersection.hh:43
static constexpr int dimIntersection
Definition: geometryintersection.hh:48
Point Intersection
Definition: geometryintersection.hh:49
ct ctype
Definition: geometryintersection.hh:44
Dune::FieldVector< ctype, dw > Point
Definition: geometryintersection.hh:45
static constexpr int dimWorld
Definition: geometryintersection.hh:47
Policy structure for segment-like intersections.
Definition: geometryintersection.hh:55
Segment Intersection
Definition: geometryintersection.hh:62
static constexpr int dimIntersection
Definition: geometryintersection.hh:61
Dune::FieldVector< ctype, dw > Point
Definition: geometryintersection.hh:57
static constexpr int dimWorld
Definition: geometryintersection.hh:60
std::array< Point, 2 > Segment
Definition: geometryintersection.hh:58
ct ctype
Definition: geometryintersection.hh:56
Policy structure for polygon-like intersections.
Definition: geometryintersection.hh:68
static constexpr int dimWorld
Definition: geometryintersection.hh:73
static constexpr int dimIntersection
Definition: geometryintersection.hh:74
ct ctype
Definition: geometryintersection.hh:69
Polygon Intersection
Definition: geometryintersection.hh:75
Dune::FieldVector< ctype, dw > Point
Definition: geometryintersection.hh:70
std::vector< Point > Polygon
Definition: geometryintersection.hh:71
Policy structure for polyhedron-like intersections.
Definition: geometryintersection.hh:81
std::vector< Point > Polyhedron
Definition: geometryintersection.hh:84
Dune::FieldVector< ctype, dw > Point
Definition: geometryintersection.hh:83
Polyhedron Intersection
Definition: geometryintersection.hh:88
static constexpr int dimIntersection
Definition: geometryintersection.hh:87
static constexpr int dimWorld
Definition: geometryintersection.hh:86
ct ctype
Definition: geometryintersection.hh:82
default policy chooser class
Definition: geometryintersection.hh:94
std::tuple_element_t< isDim, DefaultPolicies > type
Definition: geometryintersection.hh:108
A class for geometry collision detection and intersection calculation The class can be specialized fo...
Definition: geometryintersection.hh:216
typename Policy::ctype ctype
Definition: geometryintersection.hh:220
typename Policy::Intersection Intersection
Definition: geometryintersection.hh:222
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, Intersection &intersection)
Determine if the two geometries intersect and compute the intersection geometry.
Definition: geometryintersection.hh:225
typename Policy::Point Point
Definition: geometryintersection.hh:221
typename Policy::Intersection Intersection
Definition: geometryintersection.hh:250
typename Policy::ctype ctype
Definition: geometryintersection.hh:248
typename Policy::Point Point
Definition: geometryintersection.hh:249
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, Intersection &intersection)
Colliding two segments.
Definition: geometryintersection.hh:259
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, Intersection &intersection)
Colliding segment and convex polygon.
Definition: geometryintersection.hh:418
typename Policy::ctype ctype
Definition: geometryintersection.hh:402
typename Policy::Intersection Intersection
Definition: geometryintersection.hh:404
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, typename P::Intersection &intersection)
Colliding segment and convex polygon.
Definition: geometryintersection.hh:442
typename Policy::Point Point
Definition: geometryintersection.hh:403
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, typename Base::Intersection &intersection)
Colliding segment and convex polygon.
Definition: geometryintersection.hh:529
typename Policy::Intersection Intersection
Definition: geometryintersection.hh:549
typename Policy::ctype ctype
Definition: geometryintersection.hh:547
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, Intersection &intersection)
Colliding two polygons.
Definition: geometryintersection.hh:568
typename Policy::Point Point
Definition: geometryintersection.hh:548
typename Policy::Intersection Intersection
Definition: geometryintersection.hh:693
typename Policy::Point Point
Definition: geometryintersection.hh:692
typename Policy::ctype ctype
Definition: geometryintersection.hh:691
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, Intersection &intersection)
Colliding segment and convex polyhedron.
Definition: geometryintersection.hh:711
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, typename Base::Intersection &intersection)
Colliding segment and convex polyhedron.
Definition: geometryintersection.hh:827
typename Policy::Intersection Intersection
Definition: geometryintersection.hh:847
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, Intersection &intersection)
Colliding polygon and convex polyhedron.
Definition: geometryintersection.hh:868
typename Policy::Point Point
Definition: geometryintersection.hh:846
typename Policy::ctype ctype
Definition: geometryintersection.hh:845
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, typename Base::Intersection &intersection)
Colliding polygon and convex polyhedron.
Definition: geometryintersection.hh:1017
typename Policy::Intersection Intersection
Definition: geometryintersection.hh:1037
typename Policy::Point Point
Definition: geometryintersection.hh:1036
typename Policy::ctype ctype
Definition: geometryintersection.hh:1035
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, Intersection &intersection)
Colliding segment and convex polyhedron.
Definition: geometryintersection.hh:1053
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, Intersection &is)
Colliding segment and convex polyhedron.
Definition: geometryintersection.hh:1079
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, typename Base::Intersection &intersection)
Colliding segment and convex polygon.
Definition: geometryintersection.hh:1290
typename Policy::Intersection Intersection
Definition: geometryintersection.hh:1310
typename Policy::Point Point
Definition: geometryintersection.hh:1309
static bool intersection(const Geometry1 &geo1, const Geometry2 &geo2, Intersection &intersection)
Colliding two segments.
Definition: geometryintersection.hh:1324
typename Policy::ctype ctype
Definition: geometryintersection.hh:1308