3.2-git
DUNE for Multi-{Phase, Component, Scale, Physics, ...} flow and transport in porous media
freeflow/rans/zeroeq/problem.hh
Go to the documentation of this file.
1// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
2// vi: set et ts=4 sw=4 sts=4:
3/*****************************************************************************
4 * See the file COPYING for full copying permissions. *
5 * *
6 * This program is free software: you can redistribute it and/or modify *
7 * it under the terms of the GNU General Public License as published by *
8 * the Free Software Foundation, either version 3 of the License, or *
9 * (at your option) any later version. *
10 * *
11 * This program is distributed in the hope that it will be useful, *
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of *
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
14 * GNU General Public License for more details. *
15 * *
16 * You should have received a copy of the GNU General Public License *
17 * along with this program. If not, see <http://www.gnu.org/licenses/>. *
18 *****************************************************************************/
24#ifndef DUMUX_ZEROEQ_PROBLEM_HH
25#define DUMUX_ZEROEQ_PROBLEM_HH
26
27#include <string>
28
36
37#include "model.hh"
38
39namespace Dumux {
40
48template<class TypeTag>
49class RANSProblemImpl<TypeTag, TurbulenceModel::zeroeq> : public RANSProblemBase<TypeTag>
50{
51 using ParentType = RANSProblemBase<TypeTag>;
52 using Implementation = GetPropType<TypeTag, Properties::Problem>;
54 using Grid = typename GridView::Grid;
56
58 using FVElementGeometry = typename GetPropType<TypeTag, Properties::GridGeometry>::LocalView;
59 using SubControlVolumeFace = typename FVElementGeometry::SubControlVolumeFace;
63 using CellCenterPrimaryVariables = GetPropType<TypeTag, Properties::CellCenterPrimaryVariables>;
65
66 enum {
67 dim = Grid::dimension,
68 };
69 using DimVector = Dune::FieldVector<Scalar, dim>;
70 using DimMatrix = Dune::FieldMatrix<Scalar, dim, dim>;
71
72public:
78 RANSProblemImpl(std::shared_ptr<const GridGeometry> gridGeometry, const std::string& paramGroup = "")
79 : ParentType(gridGeometry, paramGroup)
80 {
81 eddyViscosityModel_ = getParamFromGroup<std::string>(paramGroup, "RANS.EddyViscosityModel", "vanDriest");
82 }
83
88 {
89 ParentType::updateStaticWallProperties();
90
91 // update size and initial values of the global vectors
92 kinematicEddyViscosity_.resize(this->gridGeometry().elementMapper().size(), 0.0);
93 additionalRoughnessLength_.resize(this->gridGeometry().elementMapper().size(), 0.0);
94 }
95
103 void updateDynamicWallProperties(const SolutionVector& curSol)
104 {
105 ParentType::updateDynamicWallProperties(curSol);
106
107 // calculate additional roughness
108 bool printedRangeWarning = false;
109 for (const auto& element : elements(this->gridGeometry().gridView()))
110 {
111 unsigned int elementIdx = this->gridGeometry().elementMapper().index(element);
112
113 auto fvGeometry = localView(this->gridGeometry());
114 fvGeometry.bindElement(element);
115 for (auto&& scv : scvs(fvGeometry))
116 {
117 using std::sqrt;
118 using std::exp;
119
120 const int dofIdx = scv.dofIndex();
121
122 // construct a privars object from the cell center solution vector
123 const auto& cellCenterPriVars = curSol[GridGeometry::cellCenterIdx()][dofIdx];
124 PrimaryVariables priVars = makePriVarsFromCellCenterPriVars<PrimaryVariables>(cellCenterPriVars);
125 auto elemSol = elementSolution<typename GridGeometry::LocalView>(std::move(priVars));
126
127 VolumeVariables volVars;
128 volVars.update(elemSol, asImp_(), element, scv);
129
130 Scalar ksPlus = this->sandGrainRoughness_[elementIdx] * volVars.uStar() / volVars.kinematicViscosity();
131 if (ksPlus > 0 && eddyViscosityModel_.compare("baldwinLomax") == 0)
132 {
133 DUNE_THROW(Dune::NotImplemented, "Roughness is not implemented for the Baldwin-Lomax model.");
134 }
135 if (ksPlus > 2000.)
136 {
137 std::cout << "info: equivalent sand grain roughness ks+=" << ksPlus << " at " << this->cellCenter_[this->wallElementIdx_[elementIdx]]
138 << " is not in the valid range (ksPlus < 2000),"
139 << " for high ksPlus values the roughness function reaches a turning point."<< std::endl;
140 DUNE_THROW(Dune::InvalidStateException, "Unphysical roughness behavior.");
141 }
142 else if (ksPlus > 0.0 && ksPlus < 4.535 && !printedRangeWarning)
143 {
144 Dune::dinfo << "info: equivalent sand grain roughness ks+=" << ksPlus << " at " << this->cellCenter_[this->wallElementIdx_[elementIdx]]
145 << " is not in the valid range (ksPlus > 4.535) and now set to 0.0"<< std::endl;
146 ksPlus = 0.0;
147 printedRangeWarning = true;
148 }
149 additionalRoughnessLength_[elementIdx] = 0.9 / (volVars.uStar() / volVars.kinematicViscosity())
150 * (sqrt(ksPlus) - ksPlus * exp(-ksPlus / 6.0));
151 }
152 }
153
154 // update routine for specfic models
155 if (eddyViscosityModel_.compare("baldwinLomax") == 0)
156 updateBaldwinLomaxProperties();
157 }
158
163 {
164 std::vector<Scalar> kinematicEddyViscosityInner(this->gridGeometry().elementMapper().size(), 0.0);
165 std::vector<Scalar> kinematicEddyViscosityOuter(this->gridGeometry().elementMapper().size(), 0.0);
166 std::vector<Scalar> kinematicEddyViscosityDifference(this->gridGeometry().elementMapper().size(), 0.0);
167 std::vector<Scalar> switchingPosition(this->gridGeometry().elementMapper().size(), std::numeric_limits<Scalar>::max());
168
169 using std::abs;
170 using std::exp;
171 using std::min;
172 using std::pow;
173 using std::sqrt;
174 const Scalar aPlus = 26.0;
175 const Scalar k = 0.0168;
176 const Scalar cCP = 1.6;
177 const Scalar cWake = 0.25;
178 const Scalar cKleb = 0.3;
179
180 std::vector<Scalar> storedFMax;
181 std::vector<Scalar> storedYFMax;
182 storedFMax.resize(this->gridGeometry().elementMapper().size(), 0.0);
183 storedYFMax.resize(this->gridGeometry().elementMapper().size(), 0.0);
184
185 // (1) calculate inner viscosity and Klebanoff function
186 for (const auto& element : elements(this->gridGeometry().gridView()))
187 {
188 unsigned int elementIdx = this->gridGeometry().elementMapper().index(element);
189 unsigned int wallElementIdx = this->wallElementIdx_[elementIdx];
190 Scalar wallDistance = this->wallDistance_[elementIdx] + additionalRoughnessLength_[elementIdx];
191 unsigned int flowNormalAxis = this->flowNormalAxis_[elementIdx];
192 unsigned int wallNormalAxis = this->wallNormalAxis_[elementIdx];
193
194 Scalar omegaAbs = abs(this->velocityGradients_[elementIdx][flowNormalAxis][wallNormalAxis]
195 - this->velocityGradients_[elementIdx][wallNormalAxis][flowNormalAxis]);
196 Scalar uStar = sqrt(this->kinematicViscosity_[wallElementIdx]
197 * abs(this->velocityGradients_[wallElementIdx][flowNormalAxis][wallNormalAxis]));
198 Scalar yPlus = wallDistance * uStar / this->kinematicViscosity_[elementIdx];
199 Scalar mixingLength = this->karmanConstant() * wallDistance * (1.0 - exp(-yPlus / aPlus));
200 kinematicEddyViscosityInner[elementIdx] = mixingLength * mixingLength * omegaAbs;
201
202 Scalar f = wallDistance * omegaAbs * (1.0 - exp(-yPlus / aPlus));
203 if (f > storedFMax[wallElementIdx])
204 {
205 storedFMax[wallElementIdx] = f;
206 storedYFMax[wallElementIdx] = wallDistance;
207 }
208 }
209
210 // (2) calculate outer viscosity
211 for (const auto& element : elements(this->gridGeometry().gridView()))
212 {
213 unsigned int elementIdx = this->gridGeometry().elementMapper().index(element);
214 unsigned int wallElementIdx = this->wallElementIdx_[elementIdx];
215 Scalar wallDistance = this->wallDistance_[elementIdx] + additionalRoughnessLength_[elementIdx];
216
217 Scalar maxVelocityNorm = 0.0;
218 Scalar minVelocityNorm = 0.0;
219 for (unsigned dimIdx = 0; dimIdx < dim; ++dimIdx)
220 {
221 maxVelocityNorm += this->velocityMaximum_[wallElementIdx][dimIdx]
222 * this->velocityMaximum_[wallElementIdx][dimIdx];
223 minVelocityNorm += this->velocityMinimum_[wallElementIdx][dimIdx]
224 * this->velocityMinimum_[wallElementIdx][dimIdx];
225 }
226 Scalar deltaU = sqrt(maxVelocityNorm) - sqrt(minVelocityNorm);
227 Scalar yFMax = storedYFMax[wallElementIdx];
228 Scalar fMax = storedFMax[wallElementIdx];
229 Scalar fWake = min(yFMax * fMax, cWake * yFMax * deltaU * deltaU / fMax);
230 Scalar fKleb = 1.0 / (1.0 + 5.5 * pow(cKleb * wallDistance / yFMax, 6.0));
231 kinematicEddyViscosityOuter[elementIdx] = k * cCP * fWake * fKleb;
232
233 kinematicEddyViscosityDifference[elementIdx]
234 = kinematicEddyViscosityInner[elementIdx] - kinematicEddyViscosityOuter[elementIdx];
235 }
236
237 // (3) switching point
238 for (const auto& element : elements(this->gridGeometry().gridView()))
239 {
240 unsigned int elementIdx = this->gridGeometry().elementMapper().index(element);
241 unsigned int wallElementIdx = this->wallElementIdx_[elementIdx];
242 Scalar wallDistance = this->wallDistance_[elementIdx] + additionalRoughnessLength_[elementIdx];
243
244 // checks if sign switches, by multiplication
245 Scalar check = kinematicEddyViscosityDifference[wallElementIdx] * kinematicEddyViscosityDifference[elementIdx];
246 if (check < 0 // means sign has switched
247 && switchingPosition[wallElementIdx] > wallDistance)
248 {
249 switchingPosition[wallElementIdx] = wallDistance;
250 }
251 }
252
253 // (4) finally determine eddy viscosity
254 for (const auto& element : elements(this->gridGeometry().gridView()))
255 {
256 unsigned int elementIdx = this->gridGeometry().elementMapper().index(element);
257 unsigned int wallElementIdx = this->wallElementIdx_[elementIdx];
258 Scalar wallDistance = this->wallDistance_[elementIdx] + additionalRoughnessLength_[elementIdx];
259
260 kinematicEddyViscosity_[elementIdx] = kinematicEddyViscosityInner[elementIdx];
261 if (wallDistance >= switchingPosition[wallElementIdx])
262 {
263 kinematicEddyViscosity_[elementIdx] = kinematicEddyViscosityOuter[elementIdx];
264 }
265 }
266 }
267
268public:
270 std::vector<Scalar> kinematicEddyViscosity_;
271 std::vector<Scalar> additionalRoughnessLength_;
272
273private:
275 Implementation &asImp_()
276 { return *static_cast<Implementation *>(this); }
277
279 const Implementation &asImp_() const
280 { return *static_cast<const Implementation *>(this); }
281};
282
283} // end namespace Dumux
284
285#endif
Base class for all staggered fv problems.
Free function to get the local view of a grid cache object.
The available discretization methods in Dumux.
The available free flow turbulence models in Dumux.
TurbulenceModel
The available free flow turbulence models in Dumux.
Definition: turbulencemodel.hh:37
GridCache::LocalView localView(const GridCache &gridCache)
Free function to get the local view of a grid cache object.
Definition: localview.hh:38
Definition: adapt.hh:29
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property (equivalent to old macro GET_PROP_TYPE(....
Definition: propertysystem.hh:149
forward declare
Definition: freeflow/rans/problem.hh:41
Reynolds-Averaged Navier-Stokes problem base class.
Definition: freeflow/rans/problem.hh:57
std::vector< Scalar > additionalRoughnessLength_
Definition: freeflow/rans/zeroeq/problem.hh:271
RANSProblemImpl(std::shared_ptr< const GridGeometry > gridGeometry, const std::string &paramGroup="")
The constructor.
Definition: freeflow/rans/zeroeq/problem.hh:78
std::string eddyViscosityModel_
Definition: freeflow/rans/zeroeq/problem.hh:269
void updateStaticWallProperties()
Correct size of the static (solution independent) wall variables.
Definition: freeflow/rans/zeroeq/problem.hh:87
std::vector< Scalar > kinematicEddyViscosity_
Definition: freeflow/rans/zeroeq/problem.hh:270
void updateDynamicWallProperties(const SolutionVector &curSol)
Update the dynamic (solution dependent) relations to the walls.
Definition: freeflow/rans/zeroeq/problem.hh:103
void updateBaldwinLomaxProperties()
Update the relations and coefficients for the Baldwin-Lomax turbulence model.
Definition: freeflow/rans/zeroeq/problem.hh:162
Declares all properties used in Dumux.
Adaption of the fully implicit scheme to the tracer transport model.
The local element solution class for staggered methods.