25#ifndef DUMUX_RICHARDSNC_IO_FIELDS_HH
26#define DUMUX_RICHARDSNC_IO_FIELDS_HH
40 template <
class OutputModule>
43 using VolumeVariables =
typename OutputModule::VolumeVariables;
44 using FS =
typename VolumeVariables::FluidSystem;
46 out.addVolumeVariable([](
const auto& v){
return v.saturation(VolumeVariables::liquidPhaseIdx); },
48 out.addVolumeVariable([](
const auto& v){
return v.saturation(VolumeVariables::gasPhaseIdx); },
50 out.addVolumeVariable([](
const auto& v){
return v.pressure(VolumeVariables::liquidPhaseIdx); },
52 out.addVolumeVariable([](
const auto& v){
return v.pressure(VolumeVariables::gasPhaseIdx); },
54 out.addVolumeVariable([](
const auto& v){
return v.capillaryPressure(); },
56 out.addVolumeVariable([](
const auto& v){
return v.density(FS::liquidPhaseIdx); },
58 out.addVolumeVariable([](
const auto& v){
return v.mobility(FS::liquidPhaseIdx); },
60 out.addVolumeVariable([](
const auto& v){
return v.relativePermeability(VolumeVariables::liquidPhaseIdx); },
62 out.addVolumeVariable([](
const auto& v){
return v.porosity(); },
64 out.addVolumeVariable([](
const auto& v){
return v.temperature(); },
67 static const bool gravity = getParamFromGroup<bool>(out.paramGroup(),
"Problem.EnableGravity");
69 out.addVolumeVariable([](
const auto& v){
return v.pressureHead(VolumeVariables::liquidPhaseIdx); },
71 out.addVolumeVariable([](
const auto& v){
return v.waterContent(VolumeVariables::liquidPhaseIdx); },
74 for (
int compIdx = 0; compIdx < VolumeVariables::numFluidComponents(); ++compIdx)
75 out.addVolumeVariable([compIdx](
const auto& v){
return v.moleFraction(VolumeVariables::liquidPhaseIdx, compIdx); },
76 IOName::moleFraction<FS>(VolumeVariables::liquidPhaseIdx, compIdx));
80 template <
class ModelTraits,
class Flu
idSystem,
class Sol
idSystem =
void>
84 return IOName::pressure<FluidSystem>(0);
86 return ModelTraits::useMoles() ? IOName::moleFraction<FluidSystem>(0, pvIdx)
87 : IOName::massFraction<FluidSystem>(0, pvIdx);
The infrastructure to retrieve run-time parameters from Dune::ParameterTrees.
A collection of input/output field names for common physical quantities.
std::string waterContent() noexcept
I/O name of water content.
Definition: name.hh:155
std::string temperature() noexcept
I/O name of temperature for equilibrium models.
Definition: name.hh:51
std::string capillaryPressure() noexcept
I/O name of capillary pressure.
Definition: name.hh:135
std::string gaseousPhase() noexcept
I/O name of gaseous phase.
Definition: name.hh:123
std::string saturation(int phaseIdx) noexcept
I/O name of saturation for multiphase systems.
Definition: name.hh:43
std::string relativePermeability(int phaseIdx) noexcept
I/O name of relative permeability for multiphase systems.
Definition: name.hh:92
std::string mobility(int phaseIdx) noexcept
I/O name of mobility for multiphase systems.
Definition: name.hh:101
std::string pressureHead() noexcept
I/O name of pressure head.
Definition: name.hh:151
std::string liquidPhase() noexcept
I/O name of liquid phase.
Definition: name.hh:119
std::string pressure(int phaseIdx) noexcept
I/O name of pressure for multiphase systems.
Definition: name.hh:34
std::string density(int phaseIdx) noexcept
I/O name of density for multiphase systems.
Definition: name.hh:65
std::string porosity() noexcept
I/O name of porosity.
Definition: name.hh:139
Adds I/O fields specific to the Richards model.
Definition: porousmediumflow/richardsnc/iofields.hh:38
static std::string primaryVariableName(int pvIdx, int state=0)
Definition: porousmediumflow/richardsnc/iofields.hh:81
static void initOutputModule(OutputModule &out)
Definition: porousmediumflow/richardsnc/iofields.hh:41