24#ifndef DUMUX_FV3DTRANSPORT2P2C_ADAPTIVE_HH
25#define DUMUX_FV3DTRANSPORT2P2C_ADAPTIVE_HH
27#include <dune/grid/common/gridenums.hh>
28#include <dune/common/float_cmp.hh>
52template<
class TypeTag>
60 using MaterialLaw =
typename SpatialParams::MaterialLaw;
74 dim = GridView::dimension, dimWorld = GridView::dimensionworld,
75 NumPhases = getPropValue<TypeTag, Properties::NumPhases>()
79 pw = Indices::pressureW,
80 pn = Indices::pressureN,
81 Sw = Indices::saturationW,
82 Sn = Indices::saturationN
86 wPhaseIdx = Indices::wPhaseIdx, nPhaseIdx = Indices::nPhaseIdx,
87 wCompIdx = Indices::wPhaseIdx, nCompIdx = Indices::nPhaseIdx,
88 contiWEqIdx=Indices::contiWEqIdx, contiNEqIdx=Indices::contiNEqIdx
91 using Element =
typename GridView::Traits::template Codim<0>::Entity;
92 using Grid =
typename GridView::Grid;
93 using Intersection =
typename GridView::Intersection;
94 using IntersectionIterator =
typename GridView::IntersectionIterator;
96 using TransmissivityMatrix = Dune::FieldVector<Scalar,dim+1>;
97 using GlobalPosition = Dune::FieldVector<Scalar, dimWorld>;
98 using DimMatrix = Dune::FieldMatrix<Scalar, dim, dim>;
99 using PhaseVector = Dune::FieldVector<Scalar, NumPhases>;
107 virtual void update(
const Scalar t, Scalar& dt, TransportSolutionType& updateVec,
110 void getMpfaFlux(Dune::FieldVector<Scalar, 2>&, Dune::FieldVector<Scalar, 2>&,
111 const IntersectionIterator&, CellData&);
125 enableMPFA = getParam<bool>(
"GridAdapt.EnableMultiPointFluxApproximation");
138 static const int pressureType = getPropValue<TypeTag, Properties::PressureFormulation>();
161template<
class TypeTag>
163 TransportSolutionType& updateVec,
bool impet)
165 this->impet_ = impet;
169 this->averagedFaces_ = 0;
172 int size_ = problem_.gridView().size(0);
173 updateVec.resize(getPropValue<TypeTag, Properties::NumComponents>());
174 updateVec[wCompIdx].resize(size_);
175 updateVec[nCompIdx].resize(size_);
176 updateVec[wCompIdx] = 0;
177 updateVec[nCompIdx] = 0;
179 if(this->totalConcentration_.size() != size_)
181 this->totalConcentration_[wCompIdx].resize(size_);
182 this->totalConcentration_[nCompIdx].resize(size_);
185 for (
int i = 0; i< problem().gridView().size(0); i++)
187 CellData& cellDataI = problem().variables().cellData(i);
188 for(
int compIdx = 0; compIdx < getPropValue<TypeTag, Properties::NumComponents>(); compIdx++)
190 this->totalConcentration_[compIdx][i]
191 = cellDataI.totalConcentration(compIdx);
195 if (this->localTimeStepping_)
197 if (this->timeStepData_.size() != size_)
198 this->timeStepData_.resize(size_);
202 int restrictingCell = -1;
204 Dune::FieldVector<Scalar, 2> entries(0.), timestepFlux(0.);
206 for (
const auto& element : elements(problem().gridView()))
209 int globalIdxI = problem().variables().index(element);
210 CellData& cellDataI = problem().variables().cellData(globalIdxI);
212 if(!impet && cellDataI.subdomain()!=2)
216 double sumfactorin = 0;
217 double sumfactorout = 0;
220 const auto isEndIt = problem().gridView().iend(element);
221 for (
auto isIt = problem().gridView().ibegin(element); isIt != isEndIt; ++isIt)
223 const auto& intersection = *isIt;
226 if (intersection.neighbor())
228 if (enableMPFA && intersection.outside().level() != element.level())
229 getMpfaFlux(entries, timestepFlux, isIt, cellDataI);
231 this->getFlux(entries, timestepFlux, intersection, cellDataI);
235 if (intersection.boundary())
237 this->getFluxOnBoundary(entries, timestepFlux, intersection, cellDataI);
240 if (this->localTimeStepping_)
242 int indexInInside = intersection.indexInInside();
244 if (localData.
faceTargetDt[indexInInside] < this->accumulatedDt_ + this->dtThreshold_)
246 localData.
faceFluxes[indexInInside] = entries;
252 updateVec[wCompIdx][globalIdxI] += entries[wCompIdx];
253 updateVec[nCompIdx][globalIdxI] += entries[nCompIdx];
256 sumfactorin += timestepFlux[0];
257 sumfactorout += timestepFlux[1];
261 if (this->localTimeStepping_)
264 for (
int i=0; i < 2*dim; i++)
266 updateVec[wCompIdx][globalIdxI] += localData.
faceFluxes[i][wCompIdx];
267 updateVec[nCompIdx][globalIdxI] += localData.
faceFluxes[i][nCompIdx];
272 PrimaryVariables q(NAN);
273 problem().source(q, element);
274 updateVec[wCompIdx][globalIdxI] += q[contiWEqIdx];
275 updateVec[nCompIdx][globalIdxI] += q[contiNEqIdx];
279 sumfactorin = max(sumfactorin,sumfactorout)
280 / problem().spatialParams().porosity(element);
283 if (this->localTimeStepping_)
285 this->timeStepData_[globalIdxI].dt = 1./sumfactorin;
286 if ( 1./sumfactorin < dt)
289 restrictingCell= globalIdxI;
294 if ( 1./sumfactorin < dt)
297 restrictingCell= globalIdxI;
305 using ElementMapper =
typename SolutionTypes::ElementMapper;
307 for (
int i = 0; i < updateVec.size(); i++)
309 DataHandle dataHandle(problem().variables().elementMapper(), updateVec[i]);
310 problem_.gridView().template communicate<DataHandle>(dataHandle,
311 Dune::InteriorBorder_All_Interface,
312 Dune::ForwardCommunication);
314 dt = problem().gridView().comm().min(dt);
319 Dune::dinfo <<
"Timestep restricted by CellIdx " << restrictingCell <<
" leads to dt = "
320 <<dt * getParam<Scalar>(
"Impet.CFLFactor")<< std::endl;
321 if(this->averagedFaces_ != 0)
322 Dune::dwarn <<
" Averageing done for " << this->averagedFaces_ <<
" faces. "<< std::endl;
344template<
class TypeTag>
346 Dune::FieldVector<Scalar, 2>& timestepFlux,
347 const IntersectionIterator& isIt, CellData& cellDataI)
349 const auto& intersection = *isIt;
354 auto elementI = intersection.inside();
355 int globalIdxI = problem().variables().index(elementI);
358 const GlobalPosition globalPos = elementI.geometry().center();
359 const GlobalPosition& gravity_ = problem().gravity();
361 Scalar volume = elementI.geometry().volume();
364 Scalar pressI = problem().pressureModel().pressure(globalIdxI);
365 Scalar pcI = cellDataI.capillaryPressure();
367 PhaseVector SmobI(0.);
369 SmobI[wPhaseIdx] = max((cellDataI.saturation(wPhaseIdx)
370 - problem().spatialParams().materialLawParams(elementI).swr())
372 SmobI[nPhaseIdx] = max((cellDataI.saturation(nPhaseIdx)
373 - problem().spatialParams().materialLawParams(elementI).snr())
376 Scalar densityWI (0.), densityNWI(0.);
377 densityWI= cellDataI.density(wPhaseIdx);
378 densityNWI = cellDataI.density(nPhaseIdx);
380 PhaseVector potential(0.);
383 auto neighbor = intersection.outside();
384 int globalIdxJ = problem().variables().index(neighbor);
385 CellData& cellDataJ = problem().variables().cellData(globalIdxJ);
388 const GlobalPosition& globalPosNeighbor = neighbor.geometry().center();
391 GlobalPosition distVec = globalPosNeighbor - globalPos;
393 Scalar dist = distVec.two_norm();
395 GlobalPosition unitDistVec(distVec);
399 Scalar densityWJ (0.), densityNWJ(0.);
400 densityWJ = cellDataJ.density(wPhaseIdx);
401 densityNWJ = cellDataJ.density(nPhaseIdx);
404 double densityW_mean = (densityWI + densityWJ) * 0.5;
405 double densityNW_mean = (densityNWI + densityNWJ) * 0.5;
407 double pressJ = problem().pressureModel().pressure(globalIdxJ);
408 Scalar pcJ = cellDataJ.capillaryPressure();
412 GlobalPosition globalPos3(0.);
414 GlobalPosition globalPos4(0.);
416 TransmissivityMatrix T(0.);
417 TransmissivityMatrix additionalT(0.);
419 GlobalPosition globalPosAdditional3(0.);
420 int globalIdxAdditional3=-1;
421 GlobalPosition globalPosAdditional4(0.);
422 int globalIdxAdditional4=-1;
425 = problem().variables().getMpfaData3D(intersection, T, globalPos3, globalIdx3, globalPos4, globalIdx4 );
426 if (halfedgesStored == 0)
427 halfedgesStored = problem().pressureModel().computeTransmissibilities(isIt,T,
428 globalPos3, globalIdx3, globalPos4, globalIdx4 );
431 Scalar press3 = problem().pressureModel().pressure(globalIdx3);
432 CellData& cellData3 = problem().variables().cellData(globalIdx3);
433 Scalar pc3 = cellData3.capillaryPressure();
434 Scalar press4 = problem().pressureModel().pressure(globalIdx4);
435 CellData& cellData4 = problem().variables().cellData(globalIdx4);
436 Scalar pc4 = cellData4.capillaryPressure();
437 Scalar temp1 = globalPos * gravity_;
438 Scalar temp2 = globalPosNeighbor * gravity_;
439 Scalar temp3 = globalPos3 * gravity_;
440 Scalar temp4 = globalPos4 * gravity_;
443 potential[wPhaseIdx] += (pressI-temp1*densityW_mean) * T[0]
444 +(pressJ-temp2*densityW_mean) * T[1]
445 +(press3- temp3*densityW_mean) * T[2]
446 +(press4- temp4*densityW_mean) * T[3];
447 potential[nPhaseIdx] += (pressI+pcI-temp1*densityNW_mean) * T[0]
448 +(pressJ+pcJ-temp2*densityNW_mean) * T[1]
449 +(press3+pc3- temp3*densityNW_mean) * T[2]
450 +(press4+pc4- temp4*densityNW_mean) * T[3];
452 else if(pressureType==pn)
454 potential[wPhaseIdx] += (pressI-pcI-temp1*densityW_mean) * T[0]
455 + (pressJ-pcJ-temp2*densityW_mean) * T[1]
456 + (press3-pc3- temp3*densityW_mean) * T[2]
457 + (press4-pc4- temp4*densityW_mean) * T[3];
458 potential[nPhaseIdx] += (pressI-temp1*densityNW_mean) * T[0]
459 + (pressJ-temp2*densityNW_mean) * T[1]
460 + (press3-temp3*densityNW_mean) * T[2]
461 + (press4-temp4*densityNW_mean) * T[3];
464 if(halfedgesStored != 1)
466 for(
int banana = 1; banana < halfedgesStored; banana ++)
469 problem().variables().getMpfaData3D(intersection, additionalT,
470 globalPosAdditional3, globalIdxAdditional3,
471 globalPosAdditional4, globalIdxAdditional4 ,
474 Scalar gravityContributionAdditonal
475 = temp1 * additionalT[0] + temp2 * additionalT[1]
476 + globalPosAdditional3*gravity_ * additionalT[2]
477 + globalPosAdditional4*gravity_ * additionalT[3];
478 CellData& cellDataA3 = problem().variables().cellData(globalIdxAdditional3);
479 CellData& cellDataA4 = problem().variables().cellData(globalIdxAdditional4);
483 potential[wPhaseIdx] += pressI * additionalT[0] + pressJ * additionalT[1]
484 +problem().pressureModel().pressure(globalIdxAdditional3) * additionalT[2]
485 +problem().pressureModel().pressure(globalIdxAdditional4)* additionalT[3];
486 potential[nPhaseIdx] += (pressI+pcI) * additionalT[0] + (pressJ+pcJ) * additionalT[1]
487 +(problem().pressureModel().pressure(globalIdxAdditional3)+cellDataA3.capillaryPressure()) * additionalT[2]
488 +(problem().pressureModel().pressure(globalIdxAdditional4)+cellDataA4.capillaryPressure()) * additionalT[3];
490 else if(pressureType==pn)
492 potential[wPhaseIdx] += (pressI-pcI) * additionalT[0] + (pressJ-pcJ) * additionalT[1]
493 + (problem().pressureModel().pressure(globalIdxAdditional3)-cellDataA3.capillaryPressure()) * additionalT[2]
494 + (problem().pressureModel().pressure(globalIdxAdditional4)-cellDataA4.capillaryPressure()) * additionalT[3];
495 potential[nPhaseIdx] += pressI * additionalT[0] + pressJ * additionalT[1]
496 + problem().pressureModel().pressure(globalIdxAdditional3) * additionalT[2]
497 + problem().pressureModel().pressure(globalIdxAdditional4) * additionalT[3];
499 potential[wPhaseIdx] -= gravityContributionAdditonal * densityW_mean;
500 potential[nPhaseIdx] -= gravityContributionAdditonal * densityNW_mean;
505 Dune::FieldVector<bool, NumPhases> doUpwinding(
true);
506 PhaseVector lambda(0.);
507 for(
int phaseIdx = 0; phaseIdx < NumPhases; phaseIdx++)
510 if(phaseIdx == wPhaseIdx)
511 contiEqIdx = contiWEqIdx;
513 contiEqIdx = contiNEqIdx;
515 if(!this->impet_ or !this->restrictFluxInTransport_)
517 if(potential[phaseIdx] > 0.)
519 lambda[phaseIdx] = cellDataI.mobility(phaseIdx);
520 cellDataI.setUpwindCell(intersection.indexInInside(), contiEqIdx,
true);
522 else if(potential[phaseIdx] < 0.)
524 lambda[phaseIdx] = cellDataJ.mobility(phaseIdx);
525 cellDataI.setUpwindCell(intersection.indexInInside(), contiEqIdx,
false);
529 doUpwinding[phaseIdx] =
false;
530 cellDataI.setUpwindCell(intersection.indexInInside(), contiEqIdx,
false);
531 cellDataJ.setUpwindCell(intersection.indexInOutside(), contiEqIdx,
false);
536 bool cellIwasUpwindCell;
538 if(elementI.level()>neighbor.level())
539 cellIwasUpwindCell = cellDataI.isUpwindCell(intersection.indexInInside(), contiEqIdx);
541 cellIwasUpwindCell = !cellDataJ.isUpwindCell(intersection.indexInOutside(), contiEqIdx);
543 if (potential[phaseIdx] > 0. && cellIwasUpwindCell)
544 lambda[phaseIdx] = cellDataI.mobility(phaseIdx);
545 else if (potential[phaseIdx] < 0. && !cellIwasUpwindCell)
546 lambda[phaseIdx] = cellDataJ.mobility(phaseIdx);
548 else if(this->restrictFluxInTransport_ == 2)
549 doUpwinding[phaseIdx] =
false;
553 if (potential[phaseIdx] > 0. && Dune::FloatCmp::ne<Scalar, Dune::FloatCmp::absolute>(cellDataJ.mobility(phaseIdx), 0.0, 1.0e-30))
554 lambda[phaseIdx] = cellDataI.mobility(phaseIdx);
555 else if (potential[phaseIdx] < 0. && Dune::FloatCmp::ne<Scalar, Dune::FloatCmp::absolute>(cellDataI.mobility(phaseIdx), 0.0, 1.0e-30))
556 lambda[phaseIdx] = cellDataJ.mobility(phaseIdx);
558 doUpwinding[phaseIdx] =
false;
562 if(!doUpwinding[phaseIdx])
565 if(cellDataI.mobility(phaseIdx)+cellDataJ.mobility(phaseIdx)==0.)
567 potential[phaseIdx] = 0;
572 fluxEntries[wCompIdx] -= potential[phaseIdx] / volume
573 *
harmonicMean(cellDataI.massFraction(phaseIdx, wCompIdx) * cellDataI.mobility(phaseIdx) * cellDataI.density(phaseIdx),
574 cellDataJ.massFraction(phaseIdx, wCompIdx) * cellDataJ.mobility(phaseIdx) * cellDataJ.density(phaseIdx));
575 fluxEntries[nCompIdx] -= potential[phaseIdx] / volume
576 *
harmonicMean(cellDataI.massFraction(phaseIdx, nCompIdx) * cellDataI.mobility(phaseIdx) * cellDataI.density(phaseIdx),
577 cellDataJ.massFraction(phaseIdx, nCompIdx) * cellDataJ.mobility(phaseIdx) * cellDataJ.density(phaseIdx));
581 timestepFlux[0] += max(0.,
582 - potential[phaseIdx] / volume
583 *
harmonicMean(cellDataI.mobility(phaseIdx),cellDataJ.mobility(phaseIdx)));
585 timestepFlux[1] += max(0.,
586 potential[phaseIdx] / volume
587 *
harmonicMean(cellDataI.mobility(phaseIdx),cellDataJ.mobility(phaseIdx))/SmobI[phaseIdx]);
590 this->averagedFaces_++;
591 #if DUNE_MINIMAL_DEBUG_LEVEL < 3
593 if(globalIdxI > globalIdxJ)
594 Dune::dinfo <<
"harmonicMean flux of phase" << phaseIdx <<
" used from cell" << globalIdxI<<
" into " << globalIdxJ
595 <<
" ; TE upwind I = "<< cellIwasUpwindCell <<
" but pot = "<< potential[phaseIdx] << std::endl;
599 potential[phaseIdx] = 0;
606 double velocityJIw = max((-lambda[wPhaseIdx] * potential[wPhaseIdx]) / volume, 0.0);
607 double velocityIJw = max(( lambda[wPhaseIdx] * potential[wPhaseIdx]) / volume, 0.0);
608 double velocityJIn = max((-lambda[nPhaseIdx] * potential[nPhaseIdx]) / volume, 0.0);
609 double velocityIJn = max(( lambda[nPhaseIdx] * potential[nPhaseIdx]) / volume, 0.0);
612 timestepFlux[0] += velocityJIw + velocityJIn;
614 double foutw = velocityIJw/SmobI[wPhaseIdx];
615 double foutn = velocityIJn/SmobI[nPhaseIdx];
618 if (isnan(foutw) || isinf(foutw) || foutw < 0) foutw = 0;
619 if (isnan(foutn) || isinf(foutn) || foutn < 0) foutn = 0;
620 timestepFlux[1] += foutw + foutn;
622 fluxEntries[wCompIdx] +=
623 velocityJIw * cellDataJ.massFraction(wPhaseIdx, wCompIdx) * densityWJ
624 - velocityIJw * cellDataI.massFraction(wPhaseIdx, wCompIdx) * densityWI
625 + velocityJIn * cellDataJ.massFraction(nPhaseIdx, wCompIdx) * densityNWJ
626 - velocityIJn * cellDataI.massFraction(nPhaseIdx, wCompIdx) * densityNWI;
627 fluxEntries[nCompIdx] +=
628 velocityJIw * cellDataJ.massFraction(wPhaseIdx, nCompIdx) * densityWJ
629 - velocityIJw * cellDataI.massFraction(wPhaseIdx, nCompIdx) * densityWI
630 + velocityJIn * cellDataJ.massFraction(nPhaseIdx, nCompIdx) * densityNWJ
631 - velocityIJn * cellDataI.massFraction(nPhaseIdx, nCompIdx) * densityNWI;
Define some often used mathematical functions.
Contains a class to exchange entries of a vector.
Defines the properties required for the adaptive sequential 2p2c models.
Finite volume discretization of the component transport equation.
constexpr Scalar harmonicMean(Scalar x, Scalar y, Scalar wx=1.0, Scalar wy=1.0) noexcept
Calculate the (weighted) harmonic mean of two scalar values.
Definition: math.hh:68
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type GetProp
get the type of a property (equivalent to old macro GET_PROP(...))
Definition: propertysystem.hh:140
typename Properties::Detail::GetPropImpl< TypeTag, Property >::type::type GetPropType
get the type alias defined in the property (equivalent to old macro GET_PROP_TYPE(....
Definition: propertysystem.hh:149
A data handle class to exchange entries of a vector.
Definition: vectorcommdatahandle.hh:79
Compositional transport step in a finite volume discretization.
Definition: fv3dtransportadaptive.hh:54
virtual void update(const Scalar t, Scalar &dt, TransportSolutionType &updateVec, bool impes=false)
Calculate the update vector and determine timestep size.
Definition: fv3dtransportadaptive.hh:162
static const int pressureType
ā€¨Specifies if the MPFA is used on hanging nodes
Definition: fv3dtransportadaptive.hh:138
FV3dTransport2P2CAdaptive(Problem &problem)
Constructs a FV3dTransport2P2CAdaptive object.
Definition: fv3dtransportadaptive.hh:122
Problem & problem_
Definition: fv3dtransportadaptive.hh:133
void getMpfaFlux(Dune::FieldVector< Scalar, 2 > &, Dune::FieldVector< Scalar, 2 > &, const IntersectionIterator &, CellData &)
Compute flux over an irregular interface using a mpfa method.
Definition: fv3dtransportadaptive.hh:345
virtual ~FV3dTransport2P2CAdaptive()
Definition: fv3dtransportadaptive.hh:128
bool enableMPFA
Definition: fv3dtransportadaptive.hh:135
Compositional transport step in a Finite Volume discretization.
Definition: fvtransport.hh:60
Definition: fvtransport.hh:113
Dune::FieldVector< EntryType, 2 *dim > faceFluxes
Definition: fvtransport.hh:114
Dune::FieldVector< Scalar, 2 *dim > faceTargetDt
Definition: fvtransport.hh:115