47template <
class ScalarT,
class ParamsT = HeatPipeLawParams<ScalarT> >
52 using Scalar =
typename Params::Scalar;
63 Scalar p0Gamma = params.p0()*params.gamma();
67 Scalar y = p0Gamma*( (1.263*1.0 - 2.120)*1.0 + 1.417)*1.0;
68 Scalar m = p0Gamma*((3*1.263*1.0 - 2*2.120)*1.0 + 1.417);
69 return (Sn - 1)*m + y;
77 return p0Gamma*((1.263*Sn - 2.120)*Sn + 1.417) * Sn;
89 DUNE_THROW(Dune::NotImplemented,
"HeatPipeLaw::Sw");
101 Scalar p0Gamma = params.p0()*params.gamma();
104 else if (Sn <= 0.0) {
105 Scalar m = -p0Gamma*1.417;
109 Scalar m = - p0Gamma*((3*1.263*Sn - 2*2.120)*Sn + 1.417);
121 DUNE_THROW(Dune::NotImplemented,
"HeatPipeLaw::dSw_dpC");
Provides 3rd order polynomial splines.
Specification of the material params for the heat pipe's capillary pressure model.
A 3rd order polynomial spline.
Definition: spline.hh:55
Implementation of the capillary pressure <-> saturation relation for the heatpipe problem.
Definition: heatpipelaw.hh:49
static Scalar dpC_dSw(const Params ¶ms, Scalar Sw)
Returns the partial derivative of the capillary pressure to the effective saturation.
Definition: heatpipelaw.hh:98
static Scalar krn(const Params ¶ms, Scalar Sw)
The relative permeability for the non-wetting phase.
Definition: heatpipelaw.hh:141
typename Params::Scalar Scalar
Definition: heatpipelaw.hh:52
static Scalar krw(const Params ¶ms, Scalar Sw)
The relative permeability for the wetting phase.
Definition: heatpipelaw.hh:130
ParamsT Params
Definition: heatpipelaw.hh:51
static Scalar pc(const Params ¶ms, Scalar Sw)
The capillary pressure-saturation curve.
Definition: heatpipelaw.hh:60
static Scalar Sw(const Params ¶ms, Scalar pC)
The saturation-capillary pressure curve.
Definition: heatpipelaw.hh:87
static Scalar dSw_dpC(const Params ¶ms, Scalar pC)
Returns the partial derivative of the effective saturation to the capillary pressure.
Definition: heatpipelaw.hh:119