12#ifndef DUMUX_SEQ_SOLVER_BACKEND_HH
13#define DUMUX_SEQ_SOLVER_BACKEND_HH
19#include <dune/istl/preconditioners.hh>
20#include <dune/istl/solvers.hh>
21#include <dune/istl/io.hh>
22#include <dune/common/indices.hh>
23#include <dune/common/hybridutilities.hh>
56 template<
class Preconditioner,
class Solver,
class Matrix,
class Vector>
58 const Dune::ParameterTree& params)
61 using MatrixAdapter = Dune::MatrixAdapter<Matrix, Vector, Vector>;
62 const auto linearOperator = std::make_shared<MatrixAdapter>(A);
64 auto precond = std::make_shared<Preconditioner>(linearOperator, params.sub(
"preconditioner"));
65 Solver solver(linearOperator, precond, params);
69 Dune::InverseOperatorResult result;
70 solver.apply(x, bTmp, result);
72 return result.converged;
100 template<
class Matrix,
class Vector>
101 bool solve(
const Matrix& A, Vector& x,
const Vector& b)
104 constexpr auto precondBlockLevel = preconditionerBlockLevel<Matrix>();
105 Dune::SeqJac<Matrix, Vector, Vector, precondBlockLevel> jac(A, 1, 1.0);
114 return "Explicit diagonal matrix solver";
127template <
class LinearSolverTraits>
133 template<
class Matrix,
class Vector>
134 bool solve(
const Matrix& A, Vector& x,
const Vector& b)
137 using Solver = Dune::BiCGSTABSolver<Vector>;
139 return IterativePreconditionedSolverImpl::template solveWithParamTree<Preconditioner, Solver>(A, x, b, solverParams);
144 return "Uzawa preconditioned BiCGSTAB solver";
152template<
class M,
class X,
class Y,
int blockLevel = 2>
155 template<std::
size_t i>
156 using DiagBlockType = std::decay_t<decltype(std::declval<M>()[Dune::index_constant<i>{}][Dune::index_constant<i>{}])>;
158 template<std::
size_t i>
159 using VecBlockType = std::decay_t<decltype(std::declval<X>()[Dune::index_constant<i>{}])>;
161 template<std::
size_t i>
162 using BlockILU = Dune::SeqILU<DiagBlockType<i>, VecBlockType<i>, VecBlockType<i>, blockLevel-1>;
164 using ILUTuple =
typename makeFromIndexedType<std::tuple, BlockILU, std::make_index_sequence<M::N()> >::type;
185 static_assert(blockLevel >= 2,
"Only makes sense for MultiTypeBlockMatrix!");
188 void pre (X& v, Y& d)
final {}
192 using namespace Dune::Hybrid;
193 forEach(integralRange(Dune::Hybrid::size(ilu_)), [&](
const auto i)
195 std::get<decltype(i)::value>(ilu_).apply(v[i], d[i]);
202 Dune::SolverCategory::Category
category() const final
204 return Dune::SolverCategory::sequential;
208 template<std::size_t... Is>
210 : ilu_(std::make_tuple(BlockILU<Is>(m[
Dune::index_constant<Is>{}][Dune::index_constant<Is>{}], w)...))
230 template<
class Matrix,
class Vector>
231 bool solve(
const Matrix& M, Vector& x,
const Vector& b)
235 Dune::BiCGSTABSolver<Vector> solver(op, preconditioner, this->
residReduction(),
238 solver.apply(x, bTmp, result_);
240 return result_.converged;
243 const Dune::InverseOperatorResult&
result()
const
249 {
return "block-diagonal ILU0-preconditioned BiCGSTAB solver"; }
252 Dune::InverseOperatorResult result_;
268 template<
int precondBlockLevel = 2,
class Matrix,
class Vector>
269 bool solve(
const Matrix& M, Vector& x,
const Vector& b)
273 static const int restartGMRes = getParamFromGroup<int>(this->
paramGroup(),
"LinearSolver.GMResRestart");
274 Dune::RestartedGMResSolver<Vector> solver(op, preconditioner, this->
residReduction(), restartGMRes,
277 solver.apply(x, bTmp, result_);
279 return result_.converged;
282 const Dune::InverseOperatorResult&
result()
const
288 {
return "block-diagonal ILU0-preconditioned restarted GMRes solver"; }
291 Dune::InverseOperatorResult result_;
298template<
class M,
class X,
class Y,
int blockLevel = 2>
301 template<std::
size_t i>
302 using DiagBlockType = std::decay_t<decltype(std::declval<M>()[Dune::index_constant<i>{}][Dune::index_constant<i>{}])>;
304 template<std::
size_t i>
305 using VecBlockType = std::decay_t<decltype(std::declval<X>()[Dune::index_constant<i>{}])>;
307 template<std::
size_t i>
308 using Smoother = Dune::SeqSSOR<DiagBlockType<i>, VecBlockType<i>, VecBlockType<i>>;
310 template<std::
size_t i>
311 using LinearOperator = Dune::MatrixAdapter<DiagBlockType<i>, VecBlockType<i>, VecBlockType<i>>;
313 template<std::
size_t i>
314 using ScalarProduct = Dune::SeqScalarProduct<VecBlockType<i>>;
316 template<std::
size_t i>
317 using BlockAMG = Dune::Amg::AMG<LinearOperator<i>, VecBlockType<i>, Smoother<i>>;
319 using AMGTuple =
typename makeFromIndexedType<std::tuple, BlockAMG, std::make_index_sequence<M::N()> >::type;
338 template<
class LOP,
class Criterion,
class SmootherArgs>
342 static_assert(blockLevel >= 2,
"Only makes sense for MultiTypeBlockMatrix!");
361 void pre (X& v, Y& d)
final
363 using namespace Dune::Hybrid;
364 forEach(integralRange(Dune::Hybrid::size(amg_)), [&](
const auto i)
366 std::get<decltype(i)::value>(amg_).pre(v[i], d[i]);
383 using namespace Dune::Hybrid;
384 forEach(integralRange(Dune::Hybrid::size(amg_)), [&](
const auto i)
386 std::get<decltype(i)::value>(amg_).apply(v[i], d[i]);
401 using namespace Dune::Hybrid;
402 forEach(integralRange(Dune::Hybrid::size(amg_)), [&](
const auto i)
404 std::get<decltype(i)::value>(amg_).post(v[i]);
409 Dune::SolverCategory::Category
category() const final
411 return Dune::SolverCategory::sequential;
415 template<
class LOP,
class Criterion,
class SmootherArgs, std::size_t... Is>
417 : amg_(std::make_tuple(BlockAMG<Is>(*std::get<Is>(lop), *std::get<Is>(c), *std::get<Is>(sa))...))
432 template<
class M, std::
size_t i>
433 using DiagBlockType = std::decay_t<decltype(std::declval<M>()[Dune::index_constant<i>{}][Dune::index_constant<i>{}])>;
435 template<
class X, std::
size_t i>
436 using VecBlockType = std::decay_t<decltype(std::declval<X>()[Dune::index_constant<i>{}])>;
438 template<
class M,
class X, std::
size_t i>
439 using Smoother = Dune::SeqSSOR<DiagBlockType<M, i>, VecBlockType<X, i>, VecBlockType<X, i>>;
441 template<
class M,
class X, std::
size_t i>
442 using SmootherArgs =
typename Dune::Amg::SmootherTraits<Smoother<M, X, i>>::Arguments;
444 template<
class M, std::
size_t i>
445 using Criterion = Dune::Amg::CoarsenCriterion<Dune::Amg::SymmetricCriterion<DiagBlockType<M, i>, Dune::Amg::FirstDiagonal>>;
447 template<
class M,
class X, std::
size_t i>
448 using LinearOperator = Dune::MatrixAdapter<DiagBlockType<M, i>, VecBlockType<X, i>, VecBlockType<X, i>>;
454 template<
class Matrix,
class Vector>
455 bool solve(
const Matrix& m, Vector& x,
const Vector& b)
459 Dune::Amg::Parameters params(15, 2000, 1.2, 1.6, Dune::Amg::atOnceAccu);
460 params.setDefaultValuesIsotropic(3);
463 auto criterion = makeCriterion_<Criterion, Matrix>(params, std::make_index_sequence<Matrix::N()>{});
464 auto smootherArgs = makeSmootherArgs_<SmootherArgs, Matrix, Vector>(std::make_index_sequence<Matrix::N()>{});
466 using namespace Dune::Hybrid;
467 forEach(std::make_index_sequence<Matrix::N()>{}, [&](
const auto i)
469 auto& args = std::get<decltype(i)::value>(smootherArgs);
470 args->iterations = 1;
471 args->relaxationFactor = 1;
474 auto linearOperator = makeLinearOperator_<LinearOperator, Matrix, Vector>(m, std::make_index_sequence<Matrix::N()>{});
479 Dune::BiCGSTABSolver<Vector> solver(op, preconditioner, this->
residReduction(),
482 solver.apply(x, bTmp, result_);
484 return result_.converged;
487 const Dune::InverseOperatorResult&
result()
const
493 {
return "block-diagonal AMG-preconditioned BiCGSTAB solver"; }
496 template<
template<
class M, std::
size_t i>
class Criterion,
class Matrix,
class Params, std::size_t... Is>
497 auto makeCriterion_(
const Params& p, std::index_sequence<Is...>)
499 return std::make_tuple(std::make_shared<Criterion<Matrix, Is>>(p)...);
502 template<
template<
class M,
class X, std::
size_t i>
class SmootherArgs,
class Matrix,
class Vector, std::size_t... Is>
503 auto makeSmootherArgs_(std::index_sequence<Is...>)
505 return std::make_tuple(std::make_shared<SmootherArgs<Matrix, Vector, Is>>()...);
508 template<
template<
class M,
class X, std::
size_t i>
class LinearOperator,
class Matrix,
class Vector, std::size_t... Is>
509 auto makeLinearOperator_(
const Matrix& m, std::index_sequence<Is...>)
511 return std::make_tuple(std::make_shared<LinearOperator<Matrix, Vector, Is>>(m[Dune::index_constant<Is>{}][Dune::index_constant<Is>{}])...);
514 Dune::InverseOperatorResult result_;
A simple ilu0 block diagonal preconditioned BiCGSTABSolver.
Definition: seqsolverbackend.hh:431
const Dune::InverseOperatorResult & result() const
Definition: seqsolverbackend.hh:487
std::string name() const
Definition: seqsolverbackend.hh:492
bool solve(const Matrix &m, Vector &x, const Vector &b)
Definition: seqsolverbackend.hh:455
A simple ilu0 block diagonal preconditioner.
Definition: seqsolverbackend.hh:300
void post(X &v) final
Clean up.
Definition: seqsolverbackend.hh:399
typename std::decay_t< M > matrix_type
The matrix type the preconditioner is for.
Definition: seqsolverbackend.hh:323
void apply(X &v, const Y &d) final
Apply one step of the preconditioner to the system A(v)=d.
Definition: seqsolverbackend.hh:381
Dune::SolverCategory::Category category() const final
Category of the preconditioner (see SolverCategory::Category)
Definition: seqsolverbackend.hh:409
Y range_type
The range type of the preconditioner.
Definition: seqsolverbackend.hh:327
void pre(X &v, Y &d) final
Prepare the preconditioner.
Definition: seqsolverbackend.hh:361
typename X::field_type field_type
The field type of the preconditioner.
Definition: seqsolverbackend.hh:329
BlockDiagAMGPreconditioner(const LOP &lop, const Criterion &c, const SmootherArgs &sa)
Constructor.
Definition: seqsolverbackend.hh:339
X domain_type
The domain type of the preconditioner.
Definition: seqsolverbackend.hh:325
A simple ilu0 block diagonal preconditioned BiCGSTABSolver.
Definition: seqsolverbackend.hh:225
std::string name() const
Definition: seqsolverbackend.hh:248
const Dune::InverseOperatorResult & result() const
Definition: seqsolverbackend.hh:243
bool solve(const Matrix &M, Vector &x, const Vector &b)
Definition: seqsolverbackend.hh:231
A simple ilu0 block diagonal preconditioner.
Definition: seqsolverbackend.hh:154
typename X::field_type field_type
The field type of the preconditioner.
Definition: seqsolverbackend.hh:174
typename std::decay_t< M > matrix_type
The matrix type the preconditioner is for.
Definition: seqsolverbackend.hh:168
Y range_type
The range type of the preconditioner.
Definition: seqsolverbackend.hh:172
void pre(X &v, Y &d) final
Definition: seqsolverbackend.hh:188
X domain_type
The domain type of the preconditioner.
Definition: seqsolverbackend.hh:170
void post(X &) final
Definition: seqsolverbackend.hh:199
Dune::SolverCategory::Category category() const final
Category of the preconditioner (see SolverCategory::Category)
Definition: seqsolverbackend.hh:202
void apply(X &v, const Y &d) final
Definition: seqsolverbackend.hh:190
BlockDiagILU0Preconditioner(const M &m, double w=1.0)
Constructor.
Definition: seqsolverbackend.hh:182
A simple ilu0 block diagonal preconditioned RestartedGMResSolver.
Definition: seqsolverbackend.hh:263
std::string name() const
Definition: seqsolverbackend.hh:287
const Dune::InverseOperatorResult & result() const
Definition: seqsolverbackend.hh:282
bool solve(const Matrix &M, Vector &x, const Vector &b)
Definition: seqsolverbackend.hh:269
Solver for simple block-diagonal matrices (e.g. from explicit time stepping schemes)
Definition: seqsolverbackend.hh:96
bool solve(const Matrix &A, Vector &x, const Vector &b)
Definition: seqsolverbackend.hh:101
std::string name() const
Definition: seqsolverbackend.hh:112
A general solver backend allowing arbitrary preconditioners and solvers.
Definition: seqsolverbackend.hh:52
static bool solveWithParamTree(const Matrix &A, Vector &x, const Vector &b, const Dune::ParameterTree ¶ms)
Definition: seqsolverbackend.hh:57
Base class for linear solvers.
Definition: solver.hh:27
Scalar residReduction() const
the linear solver residual reduction
Definition: solver.hh:98
int maxIter() const
the maximum number of linear solver iterations
Definition: solver.hh:90
const std::string & paramGroup() const
the parameter group for getting parameter from the parameter tree
Definition: solver.hh:78
LinearSolver(const std::string ¶mGroup="")
Construct the solver.
Definition: solver.hh:43
int verbosity() const
the verbosity level
Definition: solver.hh:82
static Dune::ParameterTree createParameterTree(const std::string ¶mGroup="")
Create a tree containing parameters required for the linear solvers and precondioners of the Dune IST...
Definition: linearsolverparameters.hh:47
Adapter to turn a multi-type matrix into a thread-parallel linear operator. Adapts a matrix to the as...
Definition: parallelmatrixadapter.hh:28
A preconditioner based on the Uzawa algorithm for saddle-point problems of the form .
Definition: preconditioners.hh:70
A Uzawa preconditioned BiCGSTAB solver for saddle-point problems.
Definition: seqsolverbackend.hh:129
bool solve(const Matrix &A, Vector &x, const Vector &b)
Definition: seqsolverbackend.hh:134
std::string name() const
Definition: seqsolverbackend.hh:142
constexpr std::size_t preconditionerBlockLevel() noexcept
Returns the block level for the preconditioner for a given matrix.
Definition: seqsolverbackend.hh:83
Generates a parameter tree required for the linear solvers and precondioners of the Dune ISTL.
Type traits to be used with matrix types.
Definition: common/pdesolver.hh:24
A parallel version of a linear operator.
The infrastructure to retrieve run-time parameters from Dune::ParameterTrees.
Dumux preconditioners for iterative solvers.
Base class for linear solvers.
Helper type to determine whether a given type is a Dune::MultiTypeBlockMatrix.
Definition: matrix.hh:37
Definition: utility.hh:28
Utilities for template meta programming.