12#ifndef DUMUX_GEOMETRY_GRAHAM_CONVEX_HULL_HH
13#define DUMUX_GEOMETRY_GRAHAM_CONVEX_HULL_HH
20#include <dune/common/exceptions.hh>
21#include <dune/common/fvector.hh>
36 const Dune::FieldVector<ctype, 3>& b,
37 const Dune::FieldVector<ctype, 3>& c,
38 const Dune::FieldVector<ctype, 3>&
normal)
43 const auto area = f*
normal;
54template<
int dim,
class ctype,
55 std::enable_if_t<(dim==2),
int> = 0>
56std::vector<Dune::FieldVector<ctype, 3>>
59 using Point = Dune::FieldVector<ctype, 3>;
60 std::vector<Point> convexHull;
63 if (points.size() < 3)
67 if (points.size() == 3)
71 const auto a = points[1] - points[0];
72 auto b = points[2] - points[0];
77 auto norm =
normal.two_norm();
78 while (norm == 0.0 && k < points.size()-1)
90 const auto eps = 1e-7*sqrt(norm);
94 auto minIt = std::min_element(points.begin(), points.end(), [&eps](
const auto& a,
const auto& b)
97 return (abs(a[0]-b[0]) > eps ? a[0] < b[0] : (abs(a[1]-b[1]) > eps ? a[1] < b[1] : (a[2] < b[2])));
101 std::iter_swap(minIt, points.begin());
105 const auto pivot = points[0];
106 std::sort(points.begin()+1, points.end(), [&](
const auto& a,
const auto& b)
108 const int order = getOrientation(pivot, a, b, normal);
110 return (a-pivot).two_norm() < (b-pivot).two_norm();
112 return (order == -1);
116 convexHull.reserve(50);
117 convexHull.push_back(points[0]);
118 convexHull.push_back(points[1]);
119 convexHull.push_back(points[2]);
124 for (std::size_t i = 3; i < points.size(); ++i)
126 Point p = convexHull.back();
127 convexHull.pop_back();
132 if (convexHull.size() == 1)
136 assert(i < points.size()-1);
141 p = convexHull.back();
142 convexHull.pop_back();
147 convexHull.emplace_back(std::move(p));
148 convexHull.push_back(points[i]);
160template<
int dim,
class ctype,
161 std::enable_if_t<(dim==2),
int> = 0>
162std::vector<Dune::FieldVector<ctype, 2>>
165 std::vector<Dune::FieldVector<ctype, 3>> points3D;
166 points3D.reserve(points.size());
167 std::transform(points.begin(), points.end(), std::back_inserter(points3D),
168 [](
const auto& p) { return Dune::FieldVector<ctype, 3>({p[0], p[1], 0.0}); });
170 const auto result3D = grahamConvexHullImpl<2>(points3D);
172 std::vector<Dune::FieldVector<ctype, 2>> result2D;
173 result2D.reserve(result3D.size());
174 std::transform(result3D.begin(), result3D.end(), std::back_inserter(result2D),
175 [](
const auto& p) { return Dune::FieldVector<ctype, 2>({p[0], p[1]}); });
185template<
int dim,
class ctype,
int dimWorld>
186std::vector<Dune::FieldVector<ctype, dimWorld>>
grahamConvexHull(std::vector<Dune::FieldVector<ctype, dimWorld>>& points)
188 return grahamConvexHullImpl<dim>(points);
197template<
int dim,
class ctype,
int dimWorld>
198std::vector<Dune::FieldVector<ctype, dimWorld>>
grahamConvexHull(
const std::vector<Dune::FieldVector<ctype, dimWorld>>& points)
200 auto copyPoints = points;
201 return grahamConvexHullImpl<dim>(copyPoints);
Dune::FieldVector< Scalar, 3 > crossProduct(const Dune::FieldVector< Scalar, 3 > &vec1, const Dune::FieldVector< Scalar, 3 > &vec2)
Cross product of two vectors in three-dimensional Euclidean space.
Definition: math.hh:671
constexpr int sign(const ValueType &value) noexcept
Sign or signum function.
Definition: math.hh:658
std::vector< Dune::FieldVector< ctype, 3 > > grahamConvexHullImpl(std::vector< Dune::FieldVector< ctype, 3 > > &points)
Compute the points making up the convex hull around the given set of unordered points.
Definition: grahamconvexhull.hh:57
int getOrientation(const Dune::FieldVector< ctype, 3 > &a, const Dune::FieldVector< ctype, 3 > &b, const Dune::FieldVector< ctype, 3 > &c, const Dune::FieldVector< ctype, 3 > &normal)
Returns the orientation of a sequence a-->b-->c in one plane (defined by normal vector)
Definition: grahamconvexhull.hh:35
Vector normal(const Vector &v)
Create a vector normal to the given one (v is expected to be non-zero)
Definition: normal.hh:26
std::vector< Dune::FieldVector< ctype, dimWorld > > grahamConvexHull(const std::vector< Dune::FieldVector< ctype, dimWorld > > &points)
Compute the points making up the convex hull around the given set of unordered points.
Definition: grahamconvexhull.hh:198
Define some often used mathematical functions.